Controlling the Focus of Visual Selective Attention

Selecting only a subset of the available sensory information before further detailed processing is crucial for efficient perception. In the visual modality, this selection is frequently implemented by suppressing information outside a spatially circumscribed region of the visual field, the so-called “focus of attention.” The model for the control of the focus of attention in primates presented here is based on a “Saliency Map” which is a topographic representation of the instantaneous saliency of the visual scene.

[1]  H. Nothdurft,et al.  Pop-out of orientation but no pop-out of motion at isoluminance , 1993, Vision Research.

[2]  Janice J. Snyder,et al.  Inhibition of return to successively stimulated locations in a sequential visual search paradigm. , 1998, Journal of experimental psychology. Human perception and performance.

[3]  G. W. Strong,et al.  A solution to the tag-assignment problem for neural networks , 1989, Behavioral and Brain Sciences.

[4]  D. Sagi,et al.  Vision outside the focus of attention , 1990, Perception & psychophysics.

[5]  D C Van Essen,et al.  Neural activity in areas V1, V2 and V4 during free viewing of natural scenes compared to controlled viewing , 1998, Neuroreport.

[6]  H. Egeth,et al.  Searching for conjunctively defined targets. , 1984, Journal of experimental psychology. Human perception and performance.

[7]  A. Treisman,et al.  A feature-integration theory of attention , 1980, Cognitive Psychology.

[8]  Alexander B. Bilsky,et al.  Parallel processing of park-whole information in visual search tasks , 1994, Perception & psychophysics.

[9]  C. Connor,et al.  Covert attention suppresses neuronal responses in area 7a of the posterior parietal cortex. , 1994, Journal of neurophysiology.

[10]  C Bundesen,et al.  Visual selection of features and objects: Is location special? A reinterpretation of Nissen’s (1985) findings , 1991, Perception & psychophysics.

[11]  Michael I. Posner,et al.  Networks of anatomical areas controlling visuospatial attention , 1994, Neural Networks.

[12]  Earl K. Miller,et al.  Dual mechanisms of short-term memory Ventral prefrontal cortex , 1993 .

[13]  C. Koch,et al.  An oscillation-based model for the neuronal basis of attention , 1993, Vision Research.

[14]  J. Braun Visual search among items of different salience: removal of visual attention mimics a lesion in extrastriate area V4 , 1994, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[15]  Christof Koch,et al.  A model for the neuronal implementation of selective visual attention based on temporal correlation among neurons , 1994, Journal of Computational Neuroscience.

[16]  Terrence J. Sejnowski,et al.  The “independent components” of natural scenes are edge filters , 1997, Vision Research.

[17]  S. Tipper,et al.  Short Report: Object-Centred Inhibition of Return of Visual Attention , 1991, The Quarterly journal of experimental psychology. A, Human experimental psychology.

[18]  B. Fischer,et al.  Human express saccades: extremely short reaction times of goal directed eye movements , 2004, Experimental Brain Research.

[19]  R. Wurtz,et al.  Activity of superior colliculus in behaving monkey. II. Effect of attention on neuronal responses. , 1972, Journal of neurophysiology.

[20]  J. Palmer Set-size effects in visual search: The effect of attention is independent of the stimulus for simple tasks , 1994, Vision Research.

[21]  D. V. van Essen,et al.  A neurobiological model of visual attention and invariant pattern recognition based on dynamic routing of information , 1993, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[22]  Rajesh P. N. Rao,et al.  Eye Movements in Visual Cognition: A Computational Study , 1997 .

[23]  A. Treisman Features and Objects: The Fourteenth Bartlett Memorial Lecture , 1988, The Quarterly journal of experimental psychology. A, Human experimental psychology.

[24]  Takayuki Ito,et al.  Neocognitron: A neural network model for a mechanism of visual pattern recognition , 1983, IEEE Transactions on Systems, Man, and Cybernetics.

[25]  J E Hoffman,et al.  Search through a sequentially presented visual display , 1978, Perception & psychophysics.

[26]  R. Desimone,et al.  Neural mechanisms of selective visual attention. , 1995, Annual review of neuroscience.

[27]  Edward H. Adelson,et al.  PYRAMID METHODS IN IMAGE PROCESSING. , 1984 .

[28]  R. Hari,et al.  Preference of Personal to Extrapersonal Space in a Visuomotor Task , 1996, Journal of Cognitive Neuroscience.

[29]  L. Stark,et al.  Scanpaths in Eye Movements during Pattern Perception , 1971, Science.

[30]  H Egeth,et al.  Consequences of allocating attention to locations and to other attributes , 1992, Perception & psychophysics.

[31]  J. Wolfe,et al.  Guided Search 2.0 A revised model of visual search , 1994, Psychonomic bulletin & review.

[32]  B Moulden,et al.  A Simultaneous Shift in Apparent Direction: Further Evidence for a “Distribution-Shift” Model of Direction Coding , 1980, The Quarterly journal of experimental psychology.

[33]  E. Maylor,et al.  Inhibitory component of externally controlled covert orienting in visual space. , 1985, Journal of experimental psychology. Human perception and performance.

[34]  W. Singer,et al.  Temporal coding in the visual cortex: new vistas on integration in the nervous system , 1992, Trends in Neurosciences.

[35]  Peter A. Sandon,et al.  An attentional hierarchy , 1989, Behavioral and Brain Sciences.

[36]  John Moody,et al.  Spontaneous Development of Modularity in Simple Cortical Models , 1990, Neural Computation.

[37]  V B Mountcastle,et al.  The parietal system and some higher brain functions. , 1995, Cerebral cortex.

[38]  Steven A. Hillyard,et al.  Independent hemispheric attentional systems mediate visual search in split-brain patients , 1989, Nature.

[39]  M. A. Steinmetz,et al.  Neurophysiological evidence for a role of posterior parietal cortex in redirecting visual attention. , 1995, Cerebral cortex.

[40]  S. Grossberg,et al.  Neural networks for vision and image processing , 1992 .

[41]  H. Nothdurft Saliency effects across dimensions in visual search , 1993, Vision Research.

[42]  Y. Tsal,et al.  Location dominance in attending to color and shape. , 1993, Journal of experimental psychology. Human perception and performance.

[43]  Kimron Shapiro,et al.  Direct measurement of attentional dwell time in human vision , 1994, Nature.

[44]  M F Land,et al.  The knowledge base of the oculomotor system. , 1997, Philosophical transactions of the Royal Society of London. Series B, Biological sciences.

[45]  C R Olson,et al.  Object-centered direction selectivity in the macaque supplementary eye field , 1995, Science.

[46]  H. J. Muller,et al.  SEarch via Recursive Rejection (SERR): A Connectionist Model of Visual Search , 1993, Cognitive Psychology.

[47]  S Ullman,et al.  Shifts in selective visual attention: towards the underlying neural circuitry. , 1985, Human neurobiology.

[48]  D C Van Essen,et al.  Neural activity in areas V1, V2 and V4 during free viewing of natural scenes compared to controlled viewing. , 1998, Neuroreport.

[49]  S. Yantis,et al.  Detecting conjunctions of color and form in parallel , 1990, Perception & psychophysics.

[50]  D. Broadbent Perception and communication , 1958 .

[51]  H. Nothdurft The role of features in preattentive vision: Comparison of orientation, motion and color cues , 1993, Vision Research.

[52]  S. Petersen,et al.  The pulvinar and visual salience , 1992, Trends in Neurosciences.

[53]  Thierry Pun,et al.  Visual Indexing with an Attentive System , 1991, AI*IA.

[54]  Ken Nakayama,et al.  Express attentional shifts , 1993, Vision Research.

[55]  R A Abrams,et al.  Color-based inhibition of return , 1995, Perception & psychophysics.

[56]  Robert M. McPeek,et al.  What neural pathways mediate express saccades? , 1993, Behavioral and Brain Sciences.

[57]  D. Robinson,et al.  Behavioral enhancement of visual responses in monkey cerebral cortex. I. Modulation in posterior parietal cortex related to selective visual attention. , 1981, Journal of neurophysiology.

[58]  B. C. Motter,et al.  The influence of attentive fixation upon the excitability of the light- sensitive neurons of the posterior parietal cortex , 1981, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[59]  M. Carandini,et al.  Summation and division by neurons in primate visual cortex. , 1994, Science.

[60]  D. Sagi,et al.  Texture-Based Tasks are Little Affected by Second Tasks Requiring Peripheral or Central Attentive Fixation , 1991, Perception.

[61]  Todd S. Horowitz,et al.  Visual search has no memory , 1998, Nature.

[62]  Pieter R. Roelfsema,et al.  How Precise is Neuronal Synchronization? , 1995, Neural Computation.

[63]  M. Posner,et al.  Orienting of Attention* , 1980, The Quarterly journal of experimental psychology.

[64]  E. DeYoe,et al.  A physiological correlate of the 'spotlight' of visual attention , 1999, Nature Neuroscience.

[65]  H. Egeth,et al.  Inhibition of return to object-based and environment-based locations , 1994, Perception & psychophysics.

[66]  Vito Roberto Intelligent Perceptual Systems , 1993, Lecture Notes in Computer Science.

[67]  Thierry Pun,et al.  A non-linear integration process for the selection of visual information , 1993 .

[68]  D. V. van Essen,et al.  Response modulation by texture surround in primate area V1: Correlates of “popout” under anesthesia , 1999, Visual Neuroscience.

[69]  J E Hoffman,et al.  A two-stage model of visual search , 1979, Perception & psychophysics.

[70]  G. Humphreys,et al.  Visual marking: prioritizing selection for new objects by top-down attentional inhibition of old objects. , 1997, Psychological review.

[71]  H. Nothdurft Feature analysis and the role of similarity in preattentive vision , 1992, Perception & psychophysics.

[72]  Pietro Perona,et al.  Overcomplete steerable pyramid filters and rotation invariance , 1994, 1994 Proceedings of IEEE Conference on Computer Vision and Pattern Recognition.

[73]  A. Treisman,et al.  Parietal contributions to visual feature binding: evidence from a patient with bilateral lesions , 1995, Science.

[74]  B Julesz,et al.  The speed of attentional shifts in the visual field. , 1991, Proceedings of the National Academy of Sciences of the United States of America.

[75]  Alan L. Yuille,et al.  A Winner-Take-All Mechanism Based on Presynaptic Inhibition Feedback , 1989, Neural Computation.

[76]  David J. Field,et al.  Emergence of simple-cell receptive field properties by learning a sparse code for natural images , 1996, Nature.

[77]  Patrick Brézillon,et al.  Lecture Notes in Artificial Intelligence , 1999 .

[78]  A. L. I︠A︡rbus Eye Movements and Vision , 1967 .

[79]  Steven A. Hillyard,et al.  Independent Attentional Scanning in the Separated Hemispheres of Split-Brain Patients , 1994, Journal of Cognitive Neuroscience.

[80]  M. Posner,et al.  Components of visual orienting , 1984 .

[81]  E. Azmitia Microcultures of Dissociated Primary Central Nervous System Neurons , 1990 .

[82]  G. Buchsbaum,et al.  Trichromacy, opponent colours coding and optimum colour information transmission in the retina , 1983, Proceedings of the Royal Society of London. Series B. Biological Sciences.

[83]  W. D. Ross,et al.  A Neural Theory of Attentive Visual Search : Interactions of Boundary , Surface , Spatial , and Object Representations By : Stephen Grossberg , 2004 .

[84]  C. Koch,et al.  Towards a neurobiological theory of consciousness , 1990 .