Asymptotic behavior of a generalization of the Caginalp phase-field system

We discuss the asymptotic behavior of a generalized nonlinear Caginalp phase-field system, based on the theory of heat conduction of type III devised by Green and Naghdi. In the case of two nonlinearities of polynomial critical growth, we prove the existence of global attractors of optimal regularity.

[1]  C. Christov,et al.  Heat conduction paradox involving second-sound propagation in moving media. , 2005, Physical review letters.

[2]  P. M. Naghdi,et al.  A unified procedure for construction of theories of deformable media. II. Generalized continua , 1995, Proceedings of the Royal Society of London. Series A: Mathematical and Physical Sciences.

[3]  M. Vishik,et al.  Attractors of Evolution Equations , 1992 .

[4]  P. M. Naghdi,et al.  ON UNDAMPED HEAT WAVES IN AN ELASTIC SOLID , 1992 .

[5]  Ramón Quintanilla,et al.  A type III phase-field system with a logarithmic potential , 2011, Appl. Math. Lett..

[6]  Some generalizations of the Caginalp phase-field system , 2009 .

[7]  P. M. Naghdi,et al.  Thermoelasticity without energy dissipation , 1993 .

[8]  V. Pata,et al.  Attractors for semilinear strongly damped wave equations on $\mathbb R^3$ , 2001 .

[9]  R. Quintanilla,et al.  A Phase-Field Model Based on a Three-Phase-Lag Heat Conduction , 2011 .

[10]  M Barrett,et al.  HEAT WAVES , 2019, The Year of the Femme.

[11]  G. Caginalp An analysis of a phase field model of a free boundary , 1986 .

[12]  Brian Straughan,et al.  Energy bounds for some non-standard problems in thermoelasticity , 2005, Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[13]  Ramón Quintanilla,et al.  Damping of end effects in a thermoelastic theory , 2001, Appl. Math. Lett..

[14]  M. Gurtin,et al.  A general theory of heat conduction with finite wave speeds , 1968 .

[15]  M. Conti,et al.  On the regularity of global attractors , 2009, 0901.3607.

[16]  Vittorino Pata,et al.  On the Strongly Damped Wave Equation , 2005 .

[17]  P. M. Naghdi,et al.  A unified procedure for construction of theories of deformable media. III. Mixtures of interacting continua , 1995, Proceedings of the Royal Society of London. Series A: Mathematical and Physical Sciences.

[18]  Ramón Quintanilla,et al.  EXISTENCE IN THERMOELASTICITY WITHOUT ENERGY DISSIPATION , 2002 .

[19]  A. Haraux,et al.  Systèmes dynamiques dissipatifs et applications , 1991 .

[20]  P. M. Naghdi,et al.  A unified procedure for construction of theories of deformable media. I. Classical continuum physics , 1995, Proceedings of the Royal Society of London. Series A: Mathematical and Physical Sciences.

[21]  Brian Straughan,et al.  A note on discontinuity waves in type III thermoelasticity , 2004, Proceedings of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences.

[22]  A generalization of the Caginalp phase-field system based on the Cattaneo law , 2009 .

[23]  Long-term analysis of strongly damped nonlinear wave equations , 2011 .

[24]  R. Quintanilla,et al.  Nonlinear waves in a Green–Naghdi dissipationless fluid , 2008 .

[25]  R. Quintanilla,et al.  Stability in thermoelasticity of type III , 2003 .

[26]  Sergey Zelik,et al.  Smooth attractors for strongly damped wave equations , 2006 .

[27]  Richard E. Mortensen,et al.  Infinite-Dimensional Dynamical Systems in Mechanics and Physics (Roger Temam) , 1991, SIAM Rev..

[28]  R. Quintanilla,et al.  On the impossibility of localization in linear thermoelasticity , 2007, Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[29]  J. Hale Asymptotic Behavior of Dissipative Systems , 1988 .

[30]  Brian Straughan,et al.  Growth and uniqueness in thermoelasticity , 2000, Proceedings of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences.