The 6dF Galaxy Survey: baryon acoustic oscillations and the local Hubble constant

We analyse the large-scale correlation function of the 6dF Galaxy Survey (6dFGS) and detect a baryon acoustic oscillation (BAO) signal at 105h −1 Mpc. The 6dFGS BAO detection allows us to constrain the distance–redshift relation at zeff = 0.106. We achieve a distance measure of DV (zeff) = 457 ± 27 Mpc and a measurement of the distance ratio, rs(zd)/DV (zeff) = 0.336 ± 0.015 (4.5 per cent precision), where rs(zd) is the sound horizon at the drag epoch zd .T he loweffective redshift of 6dFGS makes it a competitive and independent alternative to Cepheids and low-z supernovae in constraining the Hubble constant. We find a Hubble constant of H0 = 67 ± 3.2 km s −1 Mpc −1 (4.8 per cent precision) that depends only on theWilkinson Microwave Anisotropy Probe-7 (WMAP-7) calibration of the sound horizon and on the galaxy clustering in 6dFGS. Compared to earlier BAO studies at higher redshift, our analysis is less dependent on other cosmological parameters. The sensitivity to H0 can be used to break the degeneracy between the dark energy equation of state parameter w and H0 in the cosmic microwave background data. We determine that w =− 0.97 ± 0.13, using only WMAP-7 and BAO data from both 6dFGS and Percival et al. (2010). We also discuss predictions for the large-scale correlation function of two future wide-angle surveys: the Wide field ASKAP L-band Legacy All-sky Blind surveY (WALLABY) blind H I survey (with the Australian Square Kilometre Array Pathfinder, ASKAP) and the proposed Transforming Astronomical Imaging surveys through Polychromatic Analysis of Nebulae (TAIPAN) all-southern-sky optical galaxy survey with the UK Schmidt Telescope. We find that both surveys are very likely to yield detections of the BAO peak, making WALLABY the first radio galaxy survey to do so. We also predict that TAIPAN has the potential to constrain the Hubble constant with 3 per cent precision.

[1]  R. Nichol,et al.  The Intermediate-Scale Clustering of Luminous Red Galaxies , 2004, astro-ph/0411557.

[2]  What is the best way to measure baryonic acoustic oscillations , 2008, 0804.0233.

[3]  Dynamics of cosmological perturbations in position space , 2002, astro-ph/0202215.

[4]  C. Baugh,et al.  Statistical analysis of galaxy surveys – I. Robust error estimation for two-point clustering statistics , 2008, 0810.1885.

[5]  Edwin Sirko,et al.  Improving Cosmological Distance Measurements by Reconstruction of the Baryon Acoustic Peak , 2007 .

[6]  B. Jones,et al.  A lognormal model for the cosmological mass distribution. , 1991 .

[7]  D. Weinberg,et al.  Non-Gaussian fluctuations and the statistics of galaxy clustering , 1992 .

[8]  M. Crocce,et al.  Renormalized cosmological perturbation theory , 2006 .

[9]  D. Eisenstein,et al.  On the Robustness of the Acoustic Scale in the Low-Redshift Clustering of Matter , 2006, astro-ph/0604361.

[10]  E. Wright A Cosmology Calculator for the World Wide Web , 2006, astro-ph/0609593.

[11]  Durham,et al.  Cosmological parameter constraints from SDSS luminous red galaxies: a new treatment of large-scale clustering , 2009, 0901.2570.

[12]  K. Abazajian,et al.  THE SEVENTH DATA RELEASE OF THE SLOAN DIGITAL SKY SURVEY , 2008, 0812.0649.

[13]  Y. Baryshev,et al.  Absence of anti-correlations and of baryon acoustic oscillations in the galaxy correlation function from the Sloan Digital Sky Survey data release 7 , 2009, 0903.0950.

[14]  F. Kitaura,et al.  Recovering the non-linear density field from the galaxy distribution with a Poisson-lognormal filter , 2009, 0911.1407.

[15]  Christopher J. Miller,et al.  Possible Detection of Baryonic Fluctuations in the Large-Scale Structure Power Spectrum , 2001, astro-ph/0103018.

[16]  Renée Hlozek,et al.  Baryon Acoustic Oscillations , 2009, 0910.5224.

[17]  J. Peacock,et al.  Power spectrum analysis of three-dimensional redshift surveys , 1993, astro-ph/9304022.

[18]  Jayaram N. Chengalur,et al.  Thick gas discs in faint dwarf galaxies , 2010, 1002.4474.

[19]  Edward J. Wollack,et al.  FIVE-YEAR WILKINSON MICROWAVE ANISOTROPY PROBE * OBSERVATIONS: COSMOLOGICAL INTERPRETATION , 2008, 0803.0547.

[20]  N. Kaiser Clustering in real space and in redshift space , 1987 .

[21]  V. Martínez,et al.  RELIABILITY OF THE DETECTION OF THE BARYON ACOUSTIC PEAK , 2008, 0812.2154.

[22]  E. al.,et al.  The Sloan Digital Sky Survey: Technical summary , 2000, astro-ph/0006396.

[23]  L. Samushia,et al.  Simulating redshift-space distortions for galaxy pairs with wide angular separation , 2010, 1006.1652.

[24]  O. Lahav,et al.  Cosmological baryonic and matter densities from 600 000 SDSS luminous red galaxies with photometric redshifts , 2006, astro-ph/0605303.

[25]  M. Crocce,et al.  Nonlinear evolution of baryon acoustic oscillations , 2007, 0704.2783.

[26]  A. Szalay,et al.  The Baryonic Acoustic Feature and Large-Scale Clustering in the SDSS LRG Sample , 2009, 0908.2598.

[27]  Edward J. Wollack,et al.  FIVE-YEAR WILKINSON MICROWAVE ANISOTROPY PROBE OBSERVATIONS: COSMOLOGICAL INTERPRETATION , 2008, 0803.0547.

[28]  Power spectrum of the SDSS luminous red galaxies: constraints on cosmological parameters , 2006, astro-ph/0604129.

[29]  J. Peacock,et al.  Stable clustering, the halo model and non-linear cosmological power spectra , 2002, astro-ph/0207664.

[30]  R. Ellis,et al.  The 2dF Galaxy Redshift Survey: power-spectrum analysis of the final data set and cosmological implications , 2005, astro-ph/0501174.

[31]  Wayne Hu,et al.  Baryonic Features in the Matter Transfer Function , 1997, astro-ph/9709112.

[32]  I. Szapudi,et al.  Non-perturbative effects of geometry in wide-angle redshift distortions , 2008, 0802.2940.

[33]  A. Lewis,et al.  Efficient computation of CMB anisotropies in closed FRW models , 1999, astro-ph/9911177.

[34]  K. Kovač,et al.  Large-scale structure in the HI Parkes All-Sky Survey : filling the voids with HI galaxies? , 2007, astro-ph/0703713.

[35]  Max Tegmark Measuring Cosmological Parameters with Galaxy Surveys , 1997, astro-ph/9706198.

[36]  J. Starck,et al.  Wavelet analysis of baryon acoustic structures in the galaxy distribution , 2011, 1101.1911.

[37]  A. Szalay,et al.  THE BARYONIC ACOUSTIC FEATURE AND LARGE-SCALE CLUSTERING IN THE SLOAN DIGITAL SKY SURVEY LUMINOUS RED GALAXY SAMPLE , 2010 .

[38]  R. Nichol,et al.  Detection of the Baryon Acoustic Peak in the Large-Scale Correlation Function of SDSS Luminous Red Galaxies , 2005, astro-ph/0501171.

[39]  C. Chuang,et al.  Aorta Fluorescence Imaging by Using Confocal Microscopy , 2011, ISRN cardiology.

[40]  Steven G. Johnson,et al.  The Design and Implementation of FFTW3 , 2005, Proceedings of the IEEE.

[41]  Alexander S. Szalay,et al.  Baryon Acoustic Oscillations in the Sloan Digital Sky Survey Data Release 7 Galaxy Sample , 2009, 0907.1660.

[42]  S. Maddox,et al.  The Stromlo-APM Redshift Survey II. Variation of Galaxy Clustering with Morphology and Luminosity , 1994 .

[43]  Systematic effects in the sound horizon scale measurements , 2006, astro-ph/0605594.

[44]  P. Peebles,et al.  Primeval Adiabatic Perturbation in an Expanding Universe , 1970 .

[45]  Stefano Casertano,et al.  A 3% SOLUTION: DETERMINATION OF THE HUBBLE CONSTANT WITH THE HUBBLE SPACE TELESCOPE AND WIDE FIELD CAMERA 3 , 2011, 1103.2976.

[46]  The detectability of baryonic acoustic oscillations in future galaxy surveys. , 2007, astro-ph/0702543.

[47]  Max Tegmark,et al.  Cosmic complementarity: H(0) and Omega(m) from combining CMB experiments and redshift surveys , 1998 .

[48]  R. Smith,et al.  Motion of the Acoustic Peak in the Correlation Function , 2007, astro-ph/0703620.

[49]  D. Higdon,et al.  THE COYOTE UNIVERSE. I. PRECISION DETERMINATION OF THE NONLINEAR MATTER POWER SPECTRUM , 2008, 0812.1052.

[50]  G. Huetsi Power spectrum of the maxBCG sample: detection of acoustic oscillations using galaxy clusters , 2009, 0910.0492.

[51]  Scale Dependence of Halo and Galaxy Bias: Effects in Real Space , 2006, astro-ph/0609547.

[52]  Matthew Colless,et al.  The 6dF Galaxy Survey: Samples, observational techniques and the first data release , 2004, astro-ph/0403501.

[53]  M. Skrutskie,et al.  2MASS Extended Source Catalog: Overview and Algorithms , 2000, astro-ph/0004318.

[54]  W. Percival,et al.  Fourier analysis of luminosity-dependent galaxy clustering , 2003, astro-ph/0306511.

[55]  Determination of the Baryon Density from Large-Scale Galaxy Redshift Surveys , 1997, astro-ph/9707209.

[56]  E. Gaztañaga,et al.  Clustering of luminous red galaxies – IV. Baryon acoustic peak in the line-of-sight direction and a direct measurement of H(z) , 2008, 0807.3551.

[57]  E. Bertschinger,et al.  Position-space description of the cosmic microwave background and its temperature correlation function. , 2000, Physical review letters.

[58]  Alexander S. Szalay,et al.  Cosmological constraints from the clustering of the Sloan Digital Sky Survey DR7 luminous red galaxies (vol 404, pg 60, 2010) , 2009, 0907.1659.

[59]  I. Szapudi Wide-Angle Redshift Distortions Revisited , 2004, astro-ph/0404477.

[60]  R. Nichol,et al.  Cosmological constraints from the SDSS luminous red galaxies , 2006, astro-ph/0608632.

[61]  Scott Croom,et al.  The WiggleZ Dark Energy Survey: testing the cosmological model with baryon acoustic oscillations at z= 0.6 , 2011, 1105.2862.

[62]  Correlation Function in Deep Redshift Space as a Cosmological Probe , 2004, astro-ph/0408349.

[63]  Theoretical uncertainty in baryon oscillations , 2004, astro-ph/0407539.

[64]  B. Peterson,et al.  Near‐infrared and optical luminosity functions from the 6dF Galaxy Survey , 2006, astro-ph/0603609.

[65]  T. Matsubara,et al.  Resumming Cosmological Perturbations via the Lagrangian Picture: One-loop Results in Real Space and in Redshift Space , 2007, 0711.2521.

[66]  J. R. Bond,et al.  Cosmic confusion: degeneracies among cosmological parameters derived from measurements of microwave background anisotropies , 1998 .

[67]  A. Szalay,et al.  Bias and variance of angular correlation functions , 1993 .

[68]  S.Cole,et al.  The 2dF Galaxy Redshift Survey: spectra and redshifts , 2001, astro-ph/0106498.

[69]  J. R. Bond,et al.  The statistics of cosmic background radiation fluctuations , 1987 .

[70]  Robert C. Nichol,et al.  The clustering of luminous red galaxies in the Sloan Digital Sky Survey imaging data , 2006, astro-ph/0605302.

[71]  N. Padmanabhan,et al.  Constraining anisotropic baryon oscillations , 2008, 0804.0799.

[72]  J. P. Huchra,et al.  Final Results from the Hubble Space Telescope Key Project to Measure the Hubble Constant , 1998, astro-ph/9801080.

[73]  M. Blanton,et al.  REGARDING THE LINE-OF-SIGHT BARYONIC ACOUSTIC FEATURE IN THE SLOAN DIGITAL SKY SURVEY AND BARYON OSCILLATION SPECTROSCOPIC SURVEY LUMINOUS RED GALAXY SAMPLES , 2010, 1004.2244.

[74]  Hee-Jong SeoDaniel J. Eisenstein Probing Dark Energy with Baryonic Acoustic Oscillations from Future Large Galaxy Redshift Surveys , 2003 .

[75]  Asantha Cooray,et al.  Measuring Angular Diameter Distances through Halo Clustering , 2001, astro-ph/0105061.

[76]  G. Efstathiou Galaxies as tracers of the mass distribution , 1988 .

[77]  Chia-Hsun Chuang,et al.  Measurements of H(z) and DA(z) from the two-dimensional two-point correlation function of Sloan Digital Sky Survey luminous red galaxies , 2011, 1102.2251.

[78]  O. Lahav,et al.  The 6dF Galaxy Survey: final redshift release (DR3) and southern large-scale structures , 2009, 0903.5451.