Corporate Default Prediction Model Averaging: A Normative Linear Pooling Approach

Focusing on credit risk modelling, this paper introduces a novel approach for ensemble modelling based on a normative linear pooling. Models are first classified as dominant and competitive, and the pooling is run using the competitive models only. Numerical experiments based on parametric logit, Bayesian model averaging and nonparametric classification tree, random forest, bagging, boosting model comparison shows that the proposed ensemble performs better than alternative approaches, in particular when different modelling cultures are mixed together logit and classification tree. Copyright © 2016 John Wiley & Sons, Ltd.

[1]  J. Ross Quinlan,et al.  Bagging, Boosting, and C4.5 , 1996, AAAI/IAAI, Vol. 1.

[2]  J. Geweke,et al.  Optimal Prediction Pools , 2008 .

[3]  Dean Fantazzini,et al.  Enhanced Credit Default Models for Heterogeneous SME Segments , 2009 .

[4]  E. DeLong,et al.  Comparing the areas under two or more correlated receiver operating characteristic curves: a nonparametric approach. , 1988, Biometrics.

[5]  Leo Breiman,et al.  Statistical Modeling: The Two Cultures (with comments and a rejoinder by the author) , 2001, Statistical Science.

[6]  Silvia Figini,et al.  Computational Statistics and Data Analysis Making Classifier Performance Comparisons When Roc Curves Intersect , 2022 .

[7]  A. Raftery,et al.  Using Bayesian Model Averaging to Calibrate Forecast Ensembles , 2005 .

[8]  Gianni Amisano,et al.  Prediction with Misspecified Models , 2012 .

[9]  Enrique Moral-Benito,et al.  Model Averaging in Economics: An Overview , 2015 .

[10]  Peter A. Flach,et al.  A Unified View of Performance Metrics: Translating Threshold Choice into Expected Classification Loss C` Esar Ferri , 2012 .

[11]  G. Box,et al.  Transformation of the Independent Variables , 1962 .

[12]  J. Friedman Stochastic gradient boosting , 2002 .

[13]  David J. Hand,et al.  Assessing the Performance of Classification Methods , 2012 .

[14]  Leo Breiman,et al.  Statistical Modeling: The Two Cultures (with comments and a rejoinder by the author) , 2001 .

[15]  Paolo Giudici,et al.  Statistical merging of rating models , 2011, J. Oper. Res. Soc..

[16]  Leo Breiman,et al.  Bagging Predictors , 1996, Machine Learning.

[17]  J. M. Bates,et al.  The Combination of Forecasts , 1969 .

[18]  D. Duffie Measuring Corporate Default Risk , 2011 .

[19]  Wei-Yin Loh,et al.  Classification and regression trees , 2011, WIREs Data Mining Knowl. Discov..

[20]  A. Timmermann Chapter 4 Forecast Combinations , 2006 .

[21]  Hussein A. Abdou,et al.  Credit Scoring, Statistical Techniques and Evaluation Criteria: A Review of the Literature , 2011, Intell. Syst. Account. Finance Manag..

[22]  Edward I. Altman,et al.  FINANCIAL RATIOS, DISCRIMINANT ANALYSIS AND THE PREDICTION OF CORPORATE BANKRUPTCY , 1968 .

[23]  D. Madigan,et al.  Eliciting prior information to enhance the predictive performance of Bayesian graphical models , 1995 .

[24]  R. C. Merton,et al.  On the Pricing of Corporate Debt: The Risk Structure of Interest Rates , 1974, World Scientific Reference on Contingent Claims Analysis in Corporate Finance.

[25]  Simon Parsons,et al.  Principles of Data Mining by David J. Hand, Heikki Mannila and Padhraic Smyth, MIT Press, 546 pp., £34.50, ISBN 0-262-08290-X , 2004, The Knowledge Engineering Review.

[26]  Marika Vezzoli,et al.  Multidimensional Distance to Collapse Point and Sovereign Default Prediction , 2008, Intell. Syst. Account. Finance Manag..

[27]  Eric Bauer,et al.  An Empirical Comparison of Voting Classification Algorithms: Bagging, Boosting, and Variants , 1999, Machine Learning.

[28]  Leo Breiman,et al.  Random Forests , 2001, Machine Learning.

[29]  E. Altman,et al.  Modelling Credit Risk for SMEs: Evidence from the U.S. Market , 2007 .

[30]  David J. Hand,et al.  Measuring classifier performance: a coherent alternative to the area under the ROC curve , 2009, Machine Learning.

[31]  M. Stone The Opinion Pool , 1961 .

[32]  Ludmila I. Kuncheva,et al.  Combining Pattern Classifiers: Methods and Algorithms , 2004 .

[33]  Paolo Giudici,et al.  Credit risk predictions with Bayesian model averaging , 2013 .

[34]  Yoav Freund,et al.  Experiments with a New Boosting Algorithm , 1996, ICML.

[35]  Yang Gao,et al.  Learning classifier system ensemble and compact rule set , 2007, Connect. Sci..

[36]  W. Beaver The Information Content Of Annual Earnings Announcements , 1968 .

[37]  Jake Ansell,et al.  Predicting default of a small business using different definitions of financial distress , 2012, J. Oper. Res. Soc..

[38]  S. T. Buckland,et al.  An Introduction to the Bootstrap. , 1994 .

[39]  J. Friedman Greedy function approximation: A gradient boosting machine. , 2001 .

[40]  Markus Holopainen,et al.  Toward robust early-warning models: a horse race, ensembles and model uncertainty , 2015, SSRN Electronic Journal.