Cathode–Sulfide Solid Electrolyte Interfacial Instability: Challenges and Solutions

All-solid-state batteries are a candidate for next-generation energy-storage devices due to potential improvements in energy density and safety compared to current battery technologies. Due to their high ionic conductivity and potential scalability through slurry processing routes, sulfide solid-state electrolytes are promising to replace traditional liquid electrolytes and enable All-solid-state batteries, but stability of cathode-sulfide solid-state electrolytes interfaces requires further improvement. Herein we review common issues encountered at cathode-sulfide SE interfaces and strategies to alleviate these issues.

[1]  S. Dalvi,et al.  Sonocrystallization: Monitoring and controlling crystallization using ultrasound , 2020 .

[2]  K. Ryu,et al.  A novel Na substituted Li3-xNaxPS4 mixed ions solid electrolyte for all solid-state lithium batteries , 2020 .

[3]  C. V. Singh,et al.  Interface-assisted in-situ growth of halide electrolytes eliminating interfacial challenges of all-inorganic solid-state batteries , 2020 .

[4]  Chunliang Li,et al.  Outstanding electrochemical performances of the all-solid-state lithium battery using Ni-rich layered oxide cathode and sulfide electrolyte , 2020 .

[5]  K. Ryu,et al.  Novel dry deposition of LiNbO3 or Li2ZrO3 on LiNi0.6Co0.2Mn0.2O2 for high performance all-solid-state lithium batteries , 2020 .

[6]  Adelaide M. Nolan,et al.  The Thermal Stability of Lithium Solid Electrolytes with Metallic Lithium , 2020, Joule.

[7]  C. Delmas,et al.  Lithium-rich layered titanium sulfides: Cobalt- and Nickel-free high capacity cathode materials for lithium-ion batteries , 2020 .

[8]  Jie Deng,et al.  Electric Vehicles Batteries: Requirements and Challenges , 2020 .

[9]  J. Tarascon,et al.  A Li-rich layered sulfide as cathode active material in all-solid-state Li-metal batteries. , 2020, ACS applied materials & interfaces.

[10]  Tao Huang,et al.  Reducing interfacial resistance of a Li1.5Al0.5Ge1.5(PO4)3 solid electrolyte/electrode interface by polymer interlayer protection , 2020, RSC advances.

[11]  Luyi Yang,et al.  Li-Ion Cooperative Migration and Oxy-Sulfide Synergistic Effect in Li14 P2 Ge2 S16-6 x Ox Solid-State-Electrolyte Enables Extraordinary Conductivity and High Stability. , 2020, Small.

[12]  A. Sakuda,et al.  Dry coating of active material particles with sulfide solid electrolytes for an all-solid-state lithium battery , 2020 .

[13]  Yulong Sun,et al.  Li4-Sb Sn1-S4 solid solutions for air-stable solid electrolytes , 2020, Journal of Energy Chemistry.

[14]  Qian Sun,et al.  A Versatile Sn‐Substituted Argyrodite Sulfide Electrolyte for All‐Solid‐State Li Metal Batteries , 2020, Advanced Energy Materials.

[15]  Changhong Wang,et al.  Li10Ge(P1–xSbx)2S12 Lithium-Ion Conductors with Enhanced Atmospheric Stability , 2020 .

[16]  G. Reinhart,et al.  Solid versus Liquid—A Bottom‐Up Calculation Model to Analyze the Manufacturing Cost of Future High‐Energy Batteries , 2020, Energy Technology.

[17]  Dawei Song,et al.  LiNbO3-coated LiNi0.8Co0.1Mn0.1O2 cathode with high discharge capacity and rate performance for all-solid-state lithium battery , 2020, Journal of Energy Chemistry.

[18]  C. Yoon,et al.  Ni‐Rich Layered Cathode Materials with Electrochemo‐Mechanically Compliant Microstructures for All‐Solid‐State Li Batteries , 2019, Advanced Energy Materials.

[19]  P. Adelhelm,et al.  How Certain Are the Reported Ionic Conductivities of Thiophosphate-Based Solid Electrolytes? An Interlaboratory Study , 2019, ACS Energy Letters.

[20]  G. Ceder,et al.  Understanding interface stability in solid-state batteries , 2019, Nature Reviews Materials.

[21]  G. Ceder,et al.  High Active Material Loading in All‐Solid‐State Battery Electrode via Particle Size Optimization , 2019, Advanced Energy Materials.

[22]  Liquan Chen,et al.  Approaching Practically Accessible Solid-State Batteries: Stability Issues Related to Solid Electrolytes and Interfaces. , 2019, Chemical reviews.

[23]  Luhan Ye,et al.  The effects of mechanical constriction on the operation of sulfide based solid-state batteries , 2019, Journal of Materials Chemistry A.

[24]  Adelaide M. Nolan,et al.  Stable Thiophosphate-based All-Solid-State Lithium Batteries through Conformally Interfacial Nano Coating. , 2019, Nano letters.

[25]  Qian Sun,et al.  Unravelling the Chemistry and Microstructure Evolution of a Cathodic Interface in Sulfide-Based All-Solid-State Li-Ion Batteries , 2019, ACS Energy Letters.

[26]  Changhong Wang,et al.  Water‐Mediated Synthesis of a Superionic Halide Solid Electrolyte , 2019, Angewandte Chemie.

[27]  K. Tadanaga,et al.  Two-Dimensional Hybrid Halide Perovskite as Electrode Materials for All-Solid-State Lithium Secondary Batteries Based on Sulfide Solid Electrolytes , 2019, ACS Applied Energy Materials.

[28]  Lilu Liu,et al.  Liquid-involved synthesis and processing of sulfide-based solid electrolytes, electrodes, and all-solid-state batteries , 2019 .

[29]  Yong Yang,et al.  Recent Progress in All-Solid-State Lithium−Sulfur Batteries Using High Li-Ion Conductive Solid Electrolytes , 2019, Electrochemical Energy Reviews.

[30]  Lilu Liu,et al.  In Situ Formation of a Stable Interface in Solid-State Batteries , 2019, ACS Energy Letters.

[31]  V. Thangadurai,et al.  Interface in Solid-State Lithium Battery: Challenges, Progress, and Outlook. , 2019, ACS applied materials & interfaces.

[32]  Y. Park,et al.  Cathode coating using LiInO2-LiI composite for stable sulfide-based all-solid-state batteries , 2019, Scientific Reports.

[33]  Kun Zhang,et al.  Stabilizing a high-voltage LiNi0.5Mn1.5O4 cathode towards all solid state batteries: a Li-Al-Ti-P-O solid electrolyte nano-shell with a host material. , 2019, Nanoscale.

[34]  J. Janek,et al.  On the Functionality of Coatings for Cathode Active Materials in Thiophosphate‐Based All‐Solid‐State Batteries , 2019, Advanced Energy Materials.

[35]  Yan Wang,et al.  Computational Screening of Cathode Coatings for Solid-State Batteries , 2019, Joule.

[36]  Yi Cui,et al.  Practical Challenges and Future Perspectives of All-Solid-State Lithium-Metal Batteries , 2019, Chem.

[37]  Kazuo Yamamoto,et al.  Direct Observation of a Li-Ionic Space-Charge Layer Formed at an Electrode/Solid-Electrolyte Interface. , 2019, Angewandte Chemie.

[38]  Xiulin Fan,et al.  Interface engineering of sulfide electrolytes for all-solid-state lithium batteries , 2018, Nano Energy.

[39]  Ru‐Shi Liu,et al.  Ameliorating Interfacial Ionic Transportation in All-Solid-State Li-Ion Batteries with Interlayer Modifications , 2018, ACS Energy Letters.

[40]  M. Wagemaker,et al.  Space-Charge Layers in All-Solid-State Batteries; Important or Negligible? , 2018, ACS applied energy materials.

[41]  R. Bermejo,et al.  Incipient plasticity and surface damage in LiTaO3 and LiNbO3 single crystals , 2018, Materials & Design.

[42]  J. Janek,et al.  Chemo-mechanical expansion of lithium electrode materials – on the route to mechanically optimized all-solid-state batteries , 2018 .

[43]  Danielle M. Butts,et al.  Sulfide Solid Electrolytes for Lithium Battery Applications , 2018, Advanced Energy Materials.

[44]  Hun‐Gi Jung,et al.  Quantitative Analysis of Microstructures and Reaction Interfaces on Composite Cathodes in All-Solid-State Batteries Using a Three-Dimensional Reconstruction Technique. , 2018, ACS applied materials & interfaces.

[45]  X. Tao,et al.  All-solid-state batteries with slurry coated LiNi0.8Co0.1Mn0.1O2 composite cathode and Li6PS5Cl electrolyte: Effect of binder content , 2018, Journal of Power Sources.

[46]  Xiao Ji,et al.  Solid-State Electrolyte Anchored with a Carboxylated Azo Compound for All-Solid-State Lithium Batteries. , 2018, Angewandte Chemie.

[47]  Chunsheng Wang,et al.  Suppressing Li Dendrite Formation in Li2S‐P2S5 Solid Electrolyte by LiI Incorporation , 2018 .

[48]  Thorben Krauskopf,et al.  Designing Ionic Conductors: The Interplay between Structural Phenomena and Interfaces in Thiophosphate-Based Solid-State Batteries , 2018 .

[49]  姚遥,et al.  LiNi 0.8 Co 0.15 Al 0.05 O 2 正极活性材料的衰减机理及改性措施 , 2018 .

[50]  M. Winter,et al.  Performance and cost of materials for lithium-based rechargeable automotive batteries , 2018 .

[51]  M. Wagemaker,et al.  Accessing the bottleneck in all-solid state batteries, lithium-ion transport over the solid-electrolyte-electrode interface , 2017, Nature Communications.

[52]  R. Nuzzo,et al.  Evolution at the Solid Electrolyte/Gold Electrode Interface during Lithium Deposition and Stripping , 2017 .

[53]  J. Haruyama,et al.  Cation Mixing Properties toward Co Diffusion at the LiCoO2 Cathode/Sulfide Electrolyte Interface in a Solid-State Battery. , 2017, ACS applied materials & interfaces.

[54]  Minghong Zhou,et al.  Energy Storage: Nanoengineering Energy Conversion and Storage Devices via Atomic Layer Deposition (Adv. Energy Mater. 23/2016) , 2016 .

[55]  Yizhou Zhu,et al.  First Principles Study of Electrochemical and Chemical Stability of the Solid Electrolyte-Electrode Interfaces in All-Solid-State Li-Ion Batteries , 2016 .

[56]  A. Hayashi,et al.  5 V class LiNi0.5Mn1.5O4 positive electrode coated with Li3PO4 thin film for all-solid-state batteries using sulfide solid electrolyte , 2016 .

[57]  Gerbrand Ceder,et al.  Interface Stability in Solid-State Batteries , 2016 .

[58]  S. Ong,et al.  Design principles for solid-state lithium superionic conductors. , 2015, Nature materials.

[59]  Joachim Sann,et al.  Interphase formation on lithium solid electrolytes—An in situ approach to study interfacial reactions by photoelectron spectroscopy , 2015 .

[60]  N. Dudney,et al.  Handbook of Solid State Batteries , 2015 .

[61]  Liyuan Han,et al.  Space–Charge Layer Effect at Interface between Oxide Cathode and Sulfide Electrolyte in All-Solid-State Lithium-Ion Battery , 2014 .

[62]  Lingyun Liu,et al.  A review of blended cathode materials for use in Li-ion batteries , 2014 .

[63]  Seokgwang Doo,et al.  A rocking chair type all-solid-state lithium ion battery adopting Li2O–ZrO2 coated LiNi0.8Co0.15Al0.05O2 and a sulfide based electrolyte , 2014 .

[64]  Kazunori Takada,et al.  Interfacial nanoarchitectonics for solid-state lithium batteries. , 2013, Langmuir : the ACS journal of surfaces and colloids.

[65]  K. Takada,et al.  High rate capabilities of all-solid-state lithium secondary batteries using Li4Ti5O12-coated LiNi0.8Co0.15Al0.05O2 and a sulfide-based solid electrolyte , 2011 .

[66]  K. Tadanaga,et al.  Improvement of electrochemical performance of all-solid-state lithium secondary batteries by surface modification of LiMn2O4 positive electrode , 2011 .

[67]  A. Hayashi,et al.  Structural change of Li2S-P2S5 sulfide solid electrolytes in the atmosphere , 2011 .

[68]  A. Hayashi,et al.  Interfacial Observation between LiCoO2 Electrode and Li2S−P2S5 Solid Electrolytes of All-Solid-State Lithium Secondary Batteries Using Transmission Electron Microscopy† , 2010 .

[69]  Jaephil Cho,et al.  Effect of P2O5 and AlPO4 Coating on LiCoO2 Cathode Material. , 2003 .

[70]  Sehee Lee,et al.  Nanoscale Interface Modification of LiCoO2 by Al2O3 Atomic Layer Deposition for Solid-State Li Batteries , 2012 .