Modulation of gene expression in drug resistant Leishmania is associated with gene amplification, gene deletion and chromosome aneuploidy

[1]  D. Santi,et al.  Electron microscopy of amplified DNA forms in antifolate-resistant Leishmania. , 1987, The Journal of biological chemistry.

[2]  M. Ouellette,et al.  Frequent amplification of a short chain dehydrogenase gene as part of circular and linear amplicons in methotrexate resistant Leishmania. , 1993, Nucleic acids research.

[3]  Gerardo Rodríguez Ortíz,et al.  Inverted repeat structure and homologous sequences in the LD1 amplicons of Leishmania spp. , 1994, Molecular and biochemical parasitology.

[4]  M. Ouellette,et al.  Role of the locus and of the resistance gene on gene amplification frequency in methotrexate resistant Leishmania tarentolae. , 1999, Nucleic acids research.

[5]  T. C. White,et al.  The H circles of Leishmania tarentolae are a unique amplifiable system of oligomeric DNAs associated with drug resistance. , 1988, The Journal of biological chemistry.

[6]  P. Borst,et al.  Formation of linear inverted repeat amplicons following targeting of an essential gene in Leishmania , 2005, Nucleic acids research.

[7]  M. Ouellette,et al.  Homologous recombination between direct repeat sequences yields P-glycoprotein containing amplicons in arsenite resistant Leishmania. , 1993, Nucleic acids research.

[8]  M. Ouellette,et al.  Formation of extrachromosomal circular amplicons with direct or inverted duplications in drug-resistant Leishmania tarentolae , 1996, Molecular and cellular biology.

[9]  Gordon K. Smyth,et al.  Use of within-array replicate spots for assessing differential expression in microarray experiments , 2005, Bioinform..

[10]  S. Beverley Gene amplification in Leishmania. , 1991, Annual review of microbiology.

[11]  P. Myler,et al.  Evaluation of differential gene expression in Leishmania major Friedlin procyclics and metacyclics using DNA microarray analysis. , 2003, Molecular and biochemical parasitology.

[12]  H. Nakhasi,et al.  Transcriptome analysis during the process of in vitro differentiation of Leishmania donovani using genomic microarrays , 2007, Parasitology.

[13]  P. Leprohon,et al.  Role of the ABC Transporter MRPA (PGPA) in Antimony Resistance in Leishmania infantum Axenic and Intracellular Amastigotes , 2005, Antimicrobial Agents and Chemotherapy.

[14]  S. Sundar,et al.  Failure of pentavalent antimony in visceral leishmaniasis in India: report from the center of the Indian epidemic. , 2000, Clinical infectious diseases : an official publication of the Infectious Diseases Society of America.

[15]  P. Bastien,et al.  Long-range restriction maps of size-variable homologous chromosomes in Leishmania infantum. , 1991, Molecular and biochemical parasitology.

[16]  L. Hardy,et al.  Biochemical and genetic tests for inhibitors of Leishmania pteridine pathways. , 1997, Experimental parasitology.

[17]  M. Ouellette,et al.  Stage specific gene expression and cellular localization of two isoforms of the serine hydroxymethyltransferase in the protozoan parasite Leishmania. , 2006, Molecular and biochemical parasitology.

[18]  L. Hardy,et al.  New approaches to Leishmania chemotherapy: pteridine reductase 1 (PTR1) as a target and modulator of antifolate sensitivity , 1997, Parasitology.

[19]  S. Beverley,et al.  Plasticity in chromosome number and testing of essential genes in Leishmania by targeting. , 1993, Proceedings of the National Academy of Sciences of the United States of America.

[20]  M. Ouellette,et al.  Pterin transport and metabolism in Leishmania and related trypanosomatid parasites. , 2002, International journal for parasitology.

[21]  P. Brown,et al.  Exploring drug-induced alterations in gene expression in Mycobacterium tuberculosis by microarray hybridization. , 1999, Proceedings of the National Academy of Sciences of the United States of America.

[22]  S. Beverley,et al.  Reductions in methotrexate and folate influx in methotrexate-resistant lines of Leishmania major are independent of R or H region amplification. , 1987, The Journal of biological chemistry.

[23]  M. Ouellette,et al.  Elevated levels of polyamines and trypanothione resulting from overexpression of the ornithine decarboxylase gene in arsenite‐resistant Leishmania , 1999, Molecular microbiology.

[24]  M. Ouellette,et al.  Inactivation of the Leishmania tarentolae Pterin Transporter (BT1) and Reductase (PTR1) Genes Leads to Viable Parasites with Changes in Folate Metabolism and Hypersensitivity to the Antifolate Methotrexate* , 2004, Journal of Biological Chemistry.

[25]  M. Ouellette,et al.  New mechanisms of drug resistance in parasitic protozoa. , 1995, Annual review of microbiology.

[26]  Michelle D. Brazas,et al.  Using microarray gene signatures to elucidate mechanisms of antibiotic action and resistance. , 2005, Drug discovery today.

[27]  Heather J Munden,et al.  The Genome of the Kinetoplastid Parasite, Leishmania major , 2005, Science.

[28]  P. Leprohon,et al.  Growth Phase Regulation of the Main Folate Transporter of Leishmania infantum and Its Role in Methotrexate Resistance* , 2004, Journal of Biological Chemistry.

[29]  M. Ouellette,et al.  P-glycoprotein overexpression in methotrexate-resistant Leishmania tropica. , 1994, Biochemical pharmacology.

[30]  S. Sundar,et al.  Differential gene expression analysis in antimony-unresponsive Indian kala azar (visceral leishmaniasis) clinical isolates by DNA microarray , 2007, Parasitology.

[31]  Terry Speed,et al.  Normalization of cDNA microarray data. , 2003, Methods.

[32]  P. Myler,et al.  A DNA sequence (LD1) which occurs in several genomic organizations in Leishmania. , 1991, Molecular and biochemical parasitology.

[33]  D. González-Pacanowska,et al.  Co-existence of circular and multiple linear amplicons in methotrexate-resistant Leishmania. , 1995, Nucleic acids research.

[34]  M. Ouellette,et al.  Linear amplicons as precursors of amplified circles in methotrexate-resistant Leishmania tarentolae. , 1998, Nucleic acids research.

[35]  S. Beverley,et al.  A member of the aldoketo reductase family confers methotrexate resistance in Leishmania. , 1992, The Journal of biological chemistry.

[36]  M. Ouellette,et al.  A novel antifolate resistance gene on the amplified H circle of Leishmania. , 1992, The EMBO journal.

[37]  B. Ullman,et al.  Methotrexate-resistant Leishmania donovani genetically deficient in the folate-methotrexate transporter. , 1988, The Journal of biological chemistry.

[38]  K. Leifso,et al.  Genomic and proteomic expression analysis of Leishmania promastigote and amastigote life stages: the Leishmania genome is constitutively expressed. , 2007, Molecular and biochemical parasitology.

[39]  Yaning Yang,et al.  Statistical Methods for Analyzing Microarray Feature Data with Replications , 2003, J. Comput. Biol..

[40]  M. Ouellette,et al.  A New Type of High Affinity Folic Acid Transporter in the Protozoan Parasite Leishmania and Deletion of Its Gene in Methotrexate-resistant Cells* , 2002, The Journal of Biological Chemistry.

[41]  S. Tapscott,et al.  Intrastrand Annealing Leads to the Formation of a Large DNA Palindrome and Determines the Boundaries of Genomic Amplification in Human Cancer , 2007, Molecular and Cellular Biology.

[42]  Brian White,et al.  Comparative genomic analysis of three Leishmania species that cause diverse human disease , 2007, Nature Genetics.

[43]  S. Beverley,et al.  Transcriptional mapping of the amplified region encoding the dihydrofolate reductase-thymidylate synthase of Leishmania major reveals a high density of transcripts, including overlapping and antisense RNAs , 1989, Molecular and cellular biology.

[44]  S. Tapscott,et al.  Widespread and nonrandom distribution of DNA palindromes in cancer cells provides a structural platform for subsequent gene amplification , 2005, Nature Genetics.

[45]  P. Bastien,et al.  Effect of large targeted deletions on the mitotic stability of an extra chromosome mediating drug resistance in Leishmania. , 2001, Nucleic acids research.

[46]  I. Gilbert,et al.  Design, synthesis and evaluation of 2,4-diaminoquinazolines as inhibitors of trypanosomal and leishmanial dihydrofolate reductase. , 2005, Bioorganic & medicinal chemistry.

[47]  M. Ouellette,et al.  Modulation in aquaglyceroporin AQP1 gene transcript levels in drug‐resistant Leishmania , 2005, Molecular microbiology.

[48]  Chung-Hae Lee,et al.  Using microarrays to predict resistance to chemotherapy in cancer patients. , 2004, Pharmacogenomics.

[49]  H. Dewes,et al.  Impaired drug uptake in methotrexate resistant Crithidia fasciculata without changes in dihydrofolate reductase activity or gene amplification. , 1986, Molecular and biochemical parasitology.

[50]  B. Trask,et al.  Short inverted repeats initiate gene amplification through the formation of a large DNA palindrome in mammalian cells , 2002, Proceedings of the National Academy of Sciences of the United States of America.

[51]  G. Ortiz,et al.  Characterisation of the novel junctions of two minichromosomes of Leishmania major. , 1996, Molecular and biochemical parasitology.

[52]  M. Ouellette,et al.  Effect of polyglutamylation of methotrexate on its accumulation and the development of resistance in the protozoan parasite Leishmania. , 2003, Biochemical pharmacology.

[53]  Gordon K. Smyth,et al.  Empirical array quality weights in the analysis of microarray data , 2006, BMC Bioinformatics.

[54]  M. Ouellette,et al.  Proteome Mapping of the Protozoan Parasite Leishmania and Application to the Study of Drug Targets and Resistance Mechanisms* , 2003, Molecular & Cellular Proteomics.

[55]  S. Beverley,et al.  Pteridine salvage throughout the Leishmania infectious cycle: implications for antifolate chemotherapy. , 2001, Molecular and biochemical parasitology.

[56]  E. Garvey,et al.  Stable amplified DNA in drug-resistant Leishmania exists as extrachromosomal circles. , 1986, Science.

[57]  L. Hardy,et al.  Biochemical and Genetic Tests for Inhibitors ofLeishmaniaPteridine Pathways , 1997 .

[58]  J. Berman,et al.  Aneuploidy and Isochromosome Formation in Drug-Resistant Candida albicans , 2006, Science.

[59]  G. Stormo,et al.  Expression profiling using random genomic DNA microarrays identifies differentially expressed genes associated with three major developmental stages of the protozoan parasite Leishmania major. , 2004, Molecular and biochemical parasitology.

[60]  M. Ouellette,et al.  Modulation of gene expression in Leishmania drug resistant mutants as determined by targeted DNA microarrays. , 2003, Nucleic acids research.

[61]  D. Diogo,et al.  Genotypic Evolution of Azole Resistance Mechanisms in Sequential Candida albicans Isolates , 2007, Eukaryotic Cell.

[62]  M. Ouellette,et al.  Differential Protein Expression Analysis of Leishmania major Reveals Novel Roles for Methionine Adenosyltransferase and S-Adenosylmethionine in Methotrexate Resistance* , 2004, Journal of Biological Chemistry.

[63]  R. Sachs,et al.  Cancer drug resistance: the central role of the karyotype. , 2007, Drug resistance updates : reviews and commentaries in antimicrobial and anticancer chemotherapy.

[64]  S. Beverley,et al.  Unstable DNA amplifications in methotrexate resistant Leishmania consist of extrachromosomal circles which relocalize during stabilization , 1984, Cell.

[65]  G. Stark,et al.  Mechanisms of sod2 gene amplification in Schizosaccharomyces pombe. , 2000, Molecular biology of the cell.

[66]  M. Ouellette,et al.  Direct and inverted DNA repeats associated with P‐glycoprotein gene amplification in drug resistant Leishmania. , 1991, EMBO Journal.

[67]  S. Beverley,et al.  Overproduction of a bifunctional thymidylate synthetase-dihydrofolate reductase and DNA amplification in methotrexate-resistant Leishmania tropica. , 1983, Proceedings of the National Academy of Sciences of the United States of America.

[68]  P. Reche,et al.  Isolation and characterization of a mutant dihydrofolate reductase-thymidylate synthase from methotrexate-resistant Leishmania cells. , 1994, The Journal of biological chemistry.

[69]  I H Gilbert,et al.  Novel inhibitors of Leishmanial dihydrofolate reductase. , 2001, Bioorganic & medicinal chemistry letters.

[70]  S. Beverley,et al.  Amplified DNAs in laboratory stocks of Leishmania tarentolae: extrachromosomal circles structurally and functionally similar to the inverted-H-region amplification of methotrexate-resistant Leishmania major. , 1988, Molecular and cellular biology.

[71]  M. Ibrahim,et al.  The origin and evolution of the Leishmania donovani complex as inferred from a mitochondrial cytochrome oxidase II gene sequence. , 2001, Infection, genetics and evolution : journal of molecular epidemiology and evolutionary genetics in infectious diseases.

[72]  E. Handman Leishmaniasis: Current Status of Vaccine Development , 2001, Clinical Microbiology Reviews.

[73]  Timothy R Holzer,et al.  Expression profiling by whole-genome interspecies microarray hybridization reveals differential gene expression in procyclic promastigotes, lesion-derived amastigotes, and axenic amastigotes in Leishmania mexicana. , 2006, Molecular and biochemical parasitology.

[74]  P. Myler,et al.  Analysis of the Leishmania donovani transcriptome reveals an ordered progression of transient and permanent changes in gene expression during differentiation. , 2007, Molecular and biochemical parasitology.

[75]  M. Ouellette,et al.  Pterin and folate reduction by the Leishmania tarentolae H locus short-chain dehydrogenase/reductase PTR1. , 1997, Archives of biochemistry and biophysics.

[76]  Gordon K. Smyth,et al.  A comparison of background correction methods for two-colour microarrays , 2007, Bioinform..

[77]  Gordon K. Smyth,et al.  Using DNA microarrays to study gene expression in closely related species , 2007, Bioinform..

[78]  D. Vetrie,et al.  Expression profiling of the Leishmania life cycle: cDNA arrays identify developmentally regulated genes present but not annotated in the genome. , 2004, Molecular and biochemical parasitology.

[79]  Gordon K Smyth,et al.  Statistical Applications in Genetics and Molecular Biology Linear Models and Empirical Bayes Methods for Assessing Differential Expression in Microarray Experiments , 2011 .

[80]  K. Stuart,et al.  Recurrent polymorphisms in small chromosomes of Leishmania tarentolae after nutrient stress or subcloning. , 1992, Molecular and biochemical parasitology.

[81]  C. Clayton,et al.  Life without transcriptional control? From fly to man and back again , 2002, The EMBO journal.

[82]  D. Santi,et al.  Extrachromosomal elements in the lower eukaryote Leishmania. , 1988, The Journal of biological chemistry.

[83]  M. Yao,et al.  An intramolecular recombination mechanism for the formation of the rRNA gene palindrome of Tetrahymena thermophila , 1995, Molecular and cellular biology.

[84]  L. Hardy,et al.  The Roles of Pteridine Reductase 1 and Dihydrofolate Reductase-Thymidylate Synthase in Pteridine Metabolism in the Protozoan Parasite Leishmania major* , 1997, The Journal of Biological Chemistry.

[85]  P. Leprohon,et al.  Modulation of Leishmania ABC Protein Gene Expression through Life Stages and among Drug-Resistant Parasites , 2006, Eukaryotic Cell.

[86]  D. González-Pacanowska,et al.  Overexpression of AP endonuclease protects Leishmania major cells against methotrexate induced DNA fragmentation and hydrogen peroxide. , 2005, Molecular and biochemical parasitology.

[87]  M. Ouellette,et al.  A combined proteomic and transcriptomic approach to the study of stage differentiation in Leishmania infantum , 2006, Proteomics.