Errors and Artefacts in Agent-Based Modelling

The objectives of this paper are to define and classify different types of errors and artefacts that can appear in the process of developing an agent-based model, and to propose activities aimed at avoiding them during the model construction and testing phases. To do this in a structured way, we review the main concepts of the process of developing such a model – establishing a general framework that summarises the process of designing, implementing, and using agent-based models. Within this framework we identify the various stages where different types of errors and artefacts may appear. Finally we propose activities that could be used to detect (and hence eliminate) each type of error or artefact.

[1]  Hantaek Bae,et al.  On the Navier-Stokes equations , 2009 .

[2]  B. Edmonds,et al.  Computational Simulation as Theoretical Experiment , 2005 .

[3]  Pietro Terna,et al.  How to build and use agent-based models in social science , 2000 .

[4]  Eric Bonabeau,et al.  Agent-based modeling: Methods and techniques for simulating human systems , 2002, Proceedings of the National Academy of Sciences of the United States of America.

[5]  Roberto Leombruni,et al.  A Common Protocol for Agent-Based Social Simulation , 2006, J. Artif. Soc. Soc. Simul..

[6]  J. Gareth Polhill,et al.  Is Your Model Susceptible to Floating-Point Errors? , 2006, J. Artif. Soc. Soc. Simul..

[7]  Jin Xu,et al.  A Docking Experiment: Swarm and Repast for Social Network Modeling , 2003 .

[8]  Jorge J. Gómez-Sanz,et al.  Visual Modeling for Complex Agent-Based Simulation Systems , 2005, MABS.

[9]  Cathy Hawes,et al.  Asynchronous and synchronous updating in individual-based models , 2008 .

[10]  Segismundo S. Izquierdo,et al.  On the Structural Robustness of Evolutionary Models of Cooperation , 2006, IDEAL.

[11]  Harold Stanislaw,et al.  Tests of Computer Simulation Validity , 1986 .

[12]  M. Bishop What is this thing called Science , 1996 .

[13]  Reimund Rautmann,et al.  The Navier-Stokes Equations Theory and Numerical Methods , 1990 .

[14]  Xavier Vilà,et al.  A Model-To-Model Analysis of Bertrand Competition , 2008, J. Artif. Soc. Soc. Simul..

[15]  Große Steinstraße The Santa Fe Artificial Stock Market Re-Examined — Suggested Corrections , 2002 .

[16]  Ross A. Hammond,et al.  The Evolution of Ethnocentrism , 2006 .

[17]  Joshua M. Epstein Agent-based computational models and generative social science , 1999 .

[18]  Robert L. Axtell,et al.  WHY AGENTS? ON THE VARIED MOTIVATIONS FOR AGENT COMPUTING IN THE SOCIAL SCIENCES , 2000 .

[19]  B. Edmonds,et al.  Replication, Replication and Replication: Some hard lessons from model alignment , 2003, J. Artif. Soc. Soc. Simul..

[20]  Bruce Edmonds,et al.  Validation and Verification of Computational Models with Multiple Cognitive Agents , 1997 .

[21]  Alexander Gelbukh,et al.  MICAI 2005: Advances in Artificial Intelligence, 4th Mexican International Conference on Artificial Intelligence, Monterrey, Mexico, November 14-18, 2005, Proceedings , 2005, MICAI.

[22]  Sean Luke,et al.  Replication of Sugarscape Using MASON , 2007 .

[23]  Joshua M. Epstein,et al.  Agent-Based Modeling: Understanding Our Creations , 1994 .

[24]  Alun D. Preece,et al.  Semantic support for computational land-use modelling , 2005, CCGrid 2005. IEEE International Symposium on Cluster Computing and the Grid, 2005..

[25]  Alun D. Preece,et al.  A Semantic Grid Service for Experimentation with an Agent-Based Model of Land-Use Change , 2007, J. Artif. Soc. Soc. Simul..

[26]  R. Leombruni,et al.  Why are economists sceptical about agent-based simulations? , 2005 .

[27]  B. Edmonds,et al.  Sociology and Simulation: Statistical and Qualitative Cross‐Validation1 , 2005, American Journal of Sociology.

[28]  Segismundo S. Izquierdo,et al.  The impact on market efficiency of quality uncertainty without asymmetric information , 2006 .

[29]  T. Schelling Micromotives and Macrobehavior , 1978 .

[30]  John H. Miller,et al.  The standing ovation problem , 2004, Complex..

[31]  R. Hegselmann,et al.  Simulating Social Phenomena , 1997 .

[32]  Derek J. Pike,et al.  Empirical Model‐building and Response Surfaces. , 1988 .

[33]  A. J. Taylor,et al.  The Verification of Dynamic Simulation Models , 1983 .

[34]  Raúl Toral,et al.  Nonequilibrium transitions in complex networks: a model of social interaction. , 2003, Physical review. E, Statistical, nonlinear, and soft matter physics.

[35]  G. Madey,et al.  AN ONTOLOGY FOR AGENT-BASED MODELING AND SIMULATION , 2004 .

[36]  G. Nigel Gilbert,et al.  Simulation for the social scientist , 1999 .

[37]  Scott Moss,et al.  Alternative Approaches to the Empirical Validation of Agent-Based Models , 2007, J. Artif. Soc. Soc. Simul..

[38]  V. Feldmann,et al.  Virtual worlds of precision. Computer simulation in the sciences and social sciences , 2005 .

[39]  Thomas R. Gruber,et al.  A translation approach to portable ontology specifications , 1993, Knowl. Acquis..

[40]  George B. Kleindorfer,et al.  Validation in Simulation: Various Positions in the Philosophy of Science , 1998 .

[41]  R. Palmer,et al.  Time series properties of an artificial stock market , 1999 .

[42]  J. M. Sakoda The checkerboard model of social interaction , 1971 .

[43]  H. Van Dyke Parunak,et al.  Agent-Based Modeling vs. Equation-Based Modeling: A Case Study and Users' Guide , 1998, MABS.

[44]  José Manuel Galán,et al.  Appearances Can Be Deceiving: Lessons Learned Re-Implementing Axelrod's 'Evolutionary Approach to Norms' , 2005, J. Artif. Soc. Soc. Simul..

[45]  José Manuel Galán,et al.  Techniques to Understand Computer Simulations: Markov Chain Analysis , 2009, J. Artif. Soc. Soc. Simul..

[46]  Jaime Simão Sichman,et al.  Multi-Agent-Based Simulation , 2002, Lecture Notes in Computer Science.

[47]  Christina Klüver,et al.  Simulations of Group Dynamics with Different Models , 2003, J. Artif. Soc. Soc. Simul..

[48]  Norikazu Sugimoto,et al.  Cross-Element Validation in Multiagent-based Simulation: Switching Learning Mechanisms in Agents , 2003, J. Artif. Soc. Soc. Simul..

[49]  B. Schönfisch,et al.  Synchronous and asynchronous updating in cellular automata. , 1999, Bio Systems.

[50]  J. Gareth Polhill,et al.  Lessons Learned from Converting the Artificial Stock Market to Interval Arithmetic , 2005, J. Artif. Soc. Soc. Simul..

[51]  Nigel Gilbert,et al.  Simulation: A New Way of Doing Social Science , 1999 .

[52]  Jack P. C. Kleijnen,et al.  EUROPEAN JOURNAL OF OPERATIONAL , 1992 .

[53]  R. Riolo,et al.  Evolution of cooperation without reciprocity , 2001, Nature.

[54]  Joshua M. Epstein,et al.  Growing Artificial Societies: Social Science from the Bottom Up , 1996 .

[55]  N. Cutland Computability: An Introduction to Recursive Function Theory , 1980 .

[56]  Jaime Simão Sichman,et al.  Multi-agent-based simulation VI : International Workshop, MABS 2005, Utrecht, The Netherlands, July 25, 2005 : revised and invited papers , 2006 .

[57]  Dieter Fensel,et al.  Ontologies: A silver bullet for knowledge management and electronic commerce , 2002 .

[58]  Bruce Edmonds,et al.  Simulation and complexity - how they can relate , 2005 .

[59]  Bruce Edmonds,et al.  The Use of Models - Making MABS Actually Work , 2000 .

[60]  Guillaume Deffuant,et al.  Taking into Account the Variations of Neighbourhood Sizes in the Mean-Field Approximation of the Threshold Model on a Random Network , 2007, J. Artif. Soc. Soc. Simul..

[61]  R. Axelrod An Evolutionary Approach to Norms , 1986, American Political Science Review.

[62]  M. Macy,et al.  Stochastic Collusion and the Power Law of Learning , 2002 .

[63]  Emilio Corchado,et al.  Intelligent Data Engineering and Automated Learning - IDEAL 2006, 7th International Conference, Burgos, Spain, September 20-23, 2006, Proceedings , 2006, IDEAL.

[64]  Nicholas Mark Gotts,et al.  Reinforcement Learning Dynamics in Social Dilemmas , 2008, J. Artif. Soc. Soc. Simul..

[65]  Marsili,et al.  Nonequilibrium phase transition in a model for social influence , 2000, Physical review letters.

[66]  B. Edmonds The Purpose and Place of Formal Systems in the Development of Science , 2000 .

[67]  Andreas Flache,et al.  Do Irregular Grids make a Difference? Relaxing the Spatial Regularity Assumption in Cellular Models of Social Dynamics , 2001, J. Artif. Soc. Soc. Simul..

[68]  A. F. Chalmers,et al.  What Is This Thing Called Science , 1976 .

[69]  Trevor P Martin,et al.  Intelligent Data Engineering and Automated Learning , 2004 .

[70]  Guillaume Deffuant,et al.  Comparing an Individual-based Model of Behaviour Diffusion with its Mean Field Aggregate Approximation , 2003, J. Artif. Soc. Soc. Simul..

[71]  Alexis Drogoul,et al.  Multi-agent Based Simulation: Where Are the Agents? , 2002, MABS.

[72]  Raúl Toral,et al.  Role of dimensionality in Axelrod's model for the dissemination of culture , 2003 .

[73]  Joshua M. Epstein,et al.  Agent-based computational models and generative social science , 1999, Complex..

[74]  K. Happe,et al.  Research, part of a Special Feature on Empirical based agent-based modeling Agent-based Analysis of Agricultural Policies: an Illustration of the Agricultural Policy Simulator AgriPoliS, its Adaptation and Behavior , 2006 .

[75]  Paul Windrum,et al.  Empirical Validation of Agent-Based Models: Alternatives and Prospects , 2007, J. Artif. Soc. Soc. Simul..

[76]  M. Hare,et al.  Further towards a taxonomy of agent-based simulation models in environmental management , 2004, Math. Comput. Simul..

[77]  Juan Pavón,et al.  Agent-Based Simulation Replication: A Model Driven Architecture Approach , 2005, MICAI.

[78]  W. Arthur,et al.  The Economy as an Evolving Complex System II , 1988 .

[79]  Nicholas Mark Gotts,et al.  The Ghost in the Model (and Other Effects of Floating Point Arithmetic) , 2004, J. Artif. Soc. Soc. Simul..

[80]  Claudio Cioffi-Revilla,et al.  Invariance and universality in social agent-based simulations , 2002, Proceedings of the National Academy of Sciences of the United States of America.

[81]  Robert Axelrod Advancing the art of simulation in the social sciences , 1997 .

[82]  Joshua M. Epstein,et al.  Growing Artificial Societies: Social Science from the Bottom Up , 1996 .

[83]  Joshua M. Epstein,et al.  Growing artificial societies , 1996 .

[84]  Graham K. Rand,et al.  Quantitative Applications in the Social Sciences , 1983 .

[85]  Jorge J. Gómez-Sanz,et al.  Agent Oriented Software Engineering with INGENIAS , 2003, CEEMAS.

[86]  R. Axelrod The Dissemination of Culture , 1997 .

[87]  R. Palmer,et al.  Asset Pricing Under Endogenous Expectations in an Artificial Stock Market , 1996 .

[88]  Nicholas Mark Gotts,et al.  What every agent-based modeller should know about floating point arithmetic , 2006, Environ. Model. Softw..

[89]  Ross A. Hammond,et al.  Evolution of contingent altruism when cooperation is expensive. , 2006, Theoretical population biology.

[90]  Jin Xu A Docking Experiment : Swarm and Repast for Social Network Modeling , 2003 .

[91]  V. Eguíluz,et al.  Globalization, polarization and cultural drift , 2005 .

[92]  M. Macy,et al.  Learning dynamics in social dilemmas , 2002, Proceedings of the National Academy of Sciences of the United States of America.

[93]  Thomas C. Schelling,et al.  Dynamic models of segregation , 1971 .

[94]  Nicholas Mark Gotts,et al.  Transient and asymptotic dynamics of reinforcement learning in games , 2007, Games Econ. Behav..

[95]  Norman Ehrentreich Technical Trading in the Santa Fe Institute Artificial Stock Market Revisited , 2006 .

[96]  Raúl Toral,et al.  Global Culture: A Noise Induced Transition in Finite Systems , 2003 .

[97]  William Rand,et al.  Making Models Match: Replicating an Agent-Based Model , 2007, J. Artif. Soc. Soc. Simul..