T cell-activation in neuromyelitis optica lesions plays a role in their formation

[1]  K. Fujihara,et al.  T cell-activation in neuromyelitis optica lesions plays a role in their formation , 2013, Acta Neuropathologica Communications.

[2]  A. Verkman,et al.  Involvement of antibody-dependent cell-mediated cytotoxicity in inflammatory demyelination in a mouse model of neuromyelitis optica , 2013, Acta Neuropathologica.

[3]  K. Fujihara,et al.  Intrastriatal injection of interleukin-1 beta triggers the formation of neuromyelitis optica-like lesions in NMO-IgG seropositive rats , 2013, Acta neuropathologica communications.

[4]  Y. Itoyama,et al.  Presence of six different lesion types suggests diverse mechanisms of tissue injury in neuromyelitis optica , 2013, Acta Neuropathologica.

[5]  R. Stroud,et al.  Aquaporin 4-Specific T Cells in Neuromyelitis Optica Exhibit a Th17 Bias and Recognize Clostridium ABC Transporter , 2012, Annals of neurology.

[6]  Y. Itoyama,et al.  Neuromyelitis optica should be classified as an astrocytopathic disease rather than a demyelinating disease , 2012 .

[7]  D. Jarrossay,et al.  Pathogen-induced human TH17 cells produce IFN-γ or IL-10 and are regulated by IL-1β , 2012, Nature.

[8]  M. Papadopoulos,et al.  Neutrophil protease inhibition reduces neuromyelitis optica–immunoglobulin G–induced damage in mouse brain , 2012, Annals of neurology.

[9]  A. Verkman,et al.  Intravenous Neuromyelitis Optica Autoantibody in Mice Targets Aquaporin-4 in Peripheral Organs and Area Postrema , 2011, PloS one.

[10]  T. Kondo,et al.  Increased T-cell immunity against aquaporin-4 and proteolipid protein in neuromyelitis optica. , 2011, International immunology.

[11]  K. Fujihara,et al.  Pathogenic T cell responses against aquaporin 4 , 2011, Acta Neuropathologica.

[12]  M. Mori,et al.  Cytokine and chemokine profiles in neuromyelitis optica: significance of interleukin-6 , 2010, Multiple sclerosis.

[13]  T. Mcclanahan,et al.  Human Th17 Cells Comprise Heterogeneous Subsets Including IFN-γ–Producing Cells with Distinct Properties from the Th1 Lineage , 2010, The Journal of Immunology.

[14]  M. Croft Control of immunity by the TNFR-related molecule OX40 (CD134). , 2010, Annual review of immunology.

[15]  Y. Itoyama,et al.  Neuromyelitis optica: Pathogenicity of patient immunoglobulin in vivo , 2009, Annals of neurology.

[16]  B. Hemmer,et al.  Intrathecal pathogenic anti–aquaporin‐4 antibodies in early neuromyelitis optica , 2009, Annals of neurology.

[17]  Sergio Romagnani,et al.  Do studies in humans better depict Th17 cells? , 2009, Blood.

[18]  Y. Itoyama,et al.  A case of NMO seropositive for aquaporin-4 antibody more than 10 years before onset , 2009, Neurology.

[19]  H. Lassmann,et al.  Immunopathology and Infectious Diseases After Injection into the Striatum , in Vitro-Differentiated Microglia-and Bone Marrow-Derived Dendritic Cells Can Leave the Central Nervous System via the Blood Stream , 2008 .

[20]  L. Cosmi,et al.  Phenotypic and functional features of human Th17 cells , 2007, The Journal of experimental medicine.

[21]  Susan E. Murray,et al.  OX40-Mediated Differentiation to Effector Function Requires IL-2 Receptor Signaling but Not CD28, CD40, IL-12Rβ2, or T-bet1 , 2007, The Journal of Immunology.

[22]  A. Verkman,et al.  The Journal of Experimental Medicine CORRESPONDENCE , 2005 .

[23]  H. Lassmann,et al.  Autoimmune CD4+ T Cell Memory: Lifelong Persistence of Encephalitogenic T Cell Clones in Healthy Immune Repertoires 1 , 2005, The Journal of Immunology.

[24]  F. Mihara,et al.  Intrathecal activation of the IL-17/IL-8 axis in opticospinal multiple sclerosis. , 2005, Brain : a journal of neurology.

[25]  Ichiro Nakashima,et al.  A serum autoantibody marker of neuromyelitis optica: distinction from multiple sclerosis , 2004, The Lancet.

[26]  H. Simon,et al.  Functional expression of CD134 by neutrophils , 2004, European journal of immunology.

[27]  M. Ross,et al.  Maternal LPS induces cytokines in the amniotic fluid and corticotropin releasing hormone in the fetal rat brain. , 2004, American journal of physiology. Regulatory, integrative and comparative physiology.

[28]  A. Weinberg,et al.  A Signal through OX40 (CD134) Allows Anergic, Autoreactive T Cells to Acquire Effector Cell Functions1 , 2004, The Journal of Immunology.

[29]  R. Ransohoff,et al.  The Activation Status of Neuroantigen-specific T Cells in the Target Organ Determines the Clinical Outcome of Autoimmune Encephalomyelitis , 2004, The Journal of experimental medicine.

[30]  Hans Lassmann,et al.  A role for humoral mechanisms in the pathogenesis of Devic's neuromyelitis optica. , 2002, Brain : a journal of neurology.

[31]  Thomas D. Schmittgen,et al.  Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) Method. , 2001, Methods.

[32]  Wuding Zhou,et al.  Intrarenal synthesis of complement. , 2001, Kidney international.

[33]  Hans Lassmann,et al.  Clonal Expansions of Cd8+ T Cells Dominate the T Cell Infiltrate in Active Multiple Sclerosis Lesions as Shown by Micromanipulation and Single Cell Polymerase Chain Reaction , 2000, The Journal of experimental medicine.

[34]  P. Rogers,et al.  CD28, Ox-40, LFA-1, and CD4 Modulation of Th1/Th2 Differentiation Is Directly Dependent on the Dose of Antigen1 , 2000, The Journal of Immunology.

[35]  Yuetsu Tanaka,et al.  Expression and function of OX40 ligand on human dendritic cells. , 1997, Journal of immunology.

[36]  G. Murray,et al.  A highly sensitive detection method for immunohistochemistry using biotinylated tyramine , 1997, The Journal of pathology.

[37]  H. Lassmann,et al.  The demyelinating potential of antibodies to myelin oligodendrocyte glycoprotein is related to their ability to fix complement , 1991, Journal of Neuroimmunology.

[38]  Xiaoya Yang,et al.  Expression of OX40 ligand in microglia activated by IFN-gamma sustains a protective CD4+ T-cell response in vitro. , 2008, Cellular immunology.

[39]  Jo Vandesompele,et al.  RTPrimerDB: the Real-Time PCR primer and probe database , 2003, Nucleic Acids Res..

[40]  Thomas D. Schmittgen,et al.  Analysis of Relative Gene Expression Data Using Real-Time Quantitative PCR and the 2 2 DD C T Method , 2022 .