Microbial mineralization of cellulose in frozen soils

[1]  M. Nilsson,et al.  The effect of temperature and substrate quality on the carbon use efficiency of saprotrophic decomposition , 2017, Plant and Soil.

[2]  M. Nilsson,et al.  Gross primary production controls the subsequent winter CO2 exchange in a boreal peatland , 2016, Global change biology.

[3]  P. Baldrian,et al.  Functional screening of abundant bacteria from acidic forest soil indicates the metabolic potential of Acidobacteria subdivision 1 for polysaccharide decomposition , 2016, Biology and Fertility of Soils.

[4]  T. Moritz,et al.  13C Tracking after 13CO2 Supply Revealed Diurnal Patterns of Wood Formation in Aspen1 , 2015, Plant Physiology.

[5]  J. Schimel,et al.  Separating cellular metabolism from exoenzyme activity in soil organic matter decomposition , 2014 .

[6]  M. Nilsson,et al.  Temperature response of litter and soil organic matter decomposition is determined by chemical composition of organic material , 2013, Global change biology.

[7]  S. Tuorto,et al.  Bacterial genome replication at subzero temperatures in permafrost , 2013, The ISME Journal.

[8]  J. Hallett,et al.  Deconstruction of lignocellulosic biomass with ionic liquids , 2013 .

[9]  Petr Baldrian,et al.  Cellulose utilization in forest litter and soil: identification of bacterial and fungal decomposers. , 2012, FEMS microbiology ecology.

[10]  Steven D. Allison,et al.  The Michaelis–Menten kinetics of soil extracellular enzymes in response to temperature: a cross‐latitudinal study , 2012 .

[11]  R. Luque,et al.  Advances on biomass pretreatment using ionic liquids: An overview , 2011 .

[12]  J. Hallett,et al.  Understanding the polarity of ionic liquids. , 2011, Physical chemistry chemical physics : PCCP.

[13]  P. Templer,et al.  Carbon and Nitrogen Cycling in Snow‐Covered Environments , 2011 .

[14]  E. Bååth,et al.  Use and misuse of PLFA measurements in soils , 2011 .

[15]  M. Nilsson,et al.  Both catabolic and anabolic heterotrophic microbial activity proceed in frozen soils , 2010, Proceedings of the National Academy of Sciences.

[16]  T. Sparrman,et al.  Unfrozen water content moderates temperature dependence of sub-zero microbial respiration , 2010 .

[17]  M. Nilsson,et al.  Effects of soil organic matter composition on unfrozen water content and heterotrophic CO2 production of frozen soils , 2010 .

[18]  M. Nilsson,et al.  Water availability controls microbial temperature responses in frozen soil CO2 production , 2009 .

[19]  J. Canadell,et al.  Soil organic carbon pools in the northern circumpolar permafrost region , 2009 .

[20]  J. Schimel,et al.  Microbial growth in Arctic tundra soil at -2°C. , 2009, Environmental Microbiology Reports.

[21]  M. Nilsson,et al.  Contributions of matric and osmotic potentials to the unfrozen water content of frozen soils , 2009 .

[22]  Eoin L. Brodie,et al.  13C-Isotopomer-based metabolomics of microbial groups isolated from two forest soils , 2008, Metabolomics.

[23]  L. Whyte,et al.  Microbial diversity and activity through a permafrost/ground ice core profile from the Canadian high Arctic. , 2008, Environmental microbiology.

[24]  J. Welker,et al.  Continuous estimates of CO2 efflux from arctic and boreal soils during the snow‐covered season in Alaska , 2008 .

[25]  H. Laudon,et al.  Winter soil frost conditions in boreal forests control growing season soil CO2 concentration and its atmospheric exchange , 2008 .

[26]  B. Glaser,et al.  Repeated freeze–thaw cycles changed organic matter quality in a temperate forest soil , 2008 .

[27]  Richard E. Lee,et al.  A rapid approach to lipid profiling of mycobacteria using 2D HSQC NMR maps Published, JLR Papers in Press, November 2, 2007. , 2008, Journal of Lipid Research.

[28]  M. Simpson,et al.  Responses of soil organic matter and microorganisms to freeze–thaw cycles , 2007 .

[29]  U. Tsunogai,et al.  Assessment of winter fluxes of CO2 and CH4 in boreal forest soils of central Alaska estimated by the profile method and the chamber method: a diagnosis of methane emission and implications for the regional carbon budget , 2006 .

[30]  David L. Jones,et al.  Experimental evaluation of methods to quantify dissolved organic nitrogen (DON) and dissolved organic carbon (DOC) in soil , 2006 .

[31]  W. Oechel,et al.  Microbial activity in soils frozen to below −39 °C , 2006 .

[32]  E. Davidson,et al.  Temperature sensitivity of soil carbon decomposition and feedbacks to climate change , 2006, Nature.

[33]  R. Monson,et al.  Winter forest soil respiration controlled by climate and microbial community composition , 2006, Nature.

[34]  P. Vitousek,et al.  Responses of extracellular enzymes to simple and complex nutrient inputs , 2005 .

[35]  M. Nilsson,et al.  Quantifying unfrozen water in frozen soil by high-field 2H NMR. , 2004, Environmental science & technology.

[36]  G. Feller,et al.  Some like it cold: biocatalysis at low temperatures. , 2004, FEMS microbiology reviews.

[37]  Hanne Wikberg,et al.  Studies of crystallinity of Scots pine and Norway spruce cellulose , 2004, Trees.

[38]  D. Gilichinsky,et al.  Supercooled water brines within permafrost-an unknown ecological niche for microorganisms: a model for astrobiology. , 2003, Astrobiology.

[39]  Joshua P. Schimel,et al.  The implications of exoenzyme activity on microbial carbon and nitrogen limitation in soil: a theoretical model , 2003 .

[40]  N. Russell,et al.  Cold‐Adapted Microorganisms: Adaptation Strategies and Biotechnological Potential , 2003 .

[41]  S. Gower,et al.  Soil surface CO2 flux in a boreal black spruce fire chronosequence , 2002 .

[42]  Ingrid Kögel-Knabner,et al.  The macromolecular organic composition of plant and microbial residues as inputs to soil organic matter , 2002 .

[43]  U. Ilstedt,et al.  Optimum soil water for soil respiration before and after amendment with glucose in humid tropical acrisols and a boreal mor layer , 2000 .

[44]  Vladimir E. Romanovsky,et al.  Effects of unfrozen water on heat and mass transport processes in the active layer and permafrost. , 2000 .

[45]  Jeffrey A. Andrews,et al.  Soil respiration and the global carbon cycle , 2000 .

[46]  J. Welker,et al.  Wintertime CO2 efflux from Arctic soils: Implications for annual carbon budgets , 1999 .

[47]  W. Brand,et al.  ConFlo III – an interface for high precision δ13C and δ15N analysis with an extended dynamic range , 1999 .

[48]  L. Zelles,et al.  Fatty acid patterns of phospholipids and lipopolysaccharides in the characterisation of microbial communities in soil: a review , 1999, Biology and Fertility of Soils.

[49]  M. Pell,et al.  Microbial biomass and activities in soil as affected by frozen and cold storage , 1998 .

[50]  T. Szyperski Biosynthetically directed fractional 13C-labeling of proteinogenic amino acids. An efficient analytical tool to investigate intermediary metabolism. , 1995, European journal of biochemistry.

[51]  T. Szyperski Biosynthetically Directed Fractional 13C‐labeling of Proteinogenic Amino Acids , 1995 .

[52]  E. Bååth,et al.  Shifts in the structure of soil microbial communities in limed forests as revealed by phospholipid fatty acid analysis , 1993 .

[53]  H. Fritze,et al.  Soil Bacterial Biomass, Activity, Phospholipid Fatty Acid Pattern, and pH Tolerance in an Area Polluted with Alkaline Dust Deposition , 1992, Applied and environmental microbiology.

[54]  A. Nordgren A method for determining microbially available N and P in an organic soil , 1992, Biology and Fertility of Soils.

[55]  E. Bååth,et al.  Microbial biomass measured as total lipid phosphate in soils of different organic content , 1991 .

[56]  A. Bax Structure determination and spectral assignment by pulsed polarization transfer via long-range 1H13C couplings , 1984 .

[57]  A. Bax,et al.  An improved method for heteronuclear chemical shift correlation by two-dimensional NMR , 1981 .

[58]  T. Welton,et al.  Ionic liquids: not always innocent solvents for cellulose , 2015 .

[59]  S. Allison,et al.  Controls on the Temperature Sensitivity of Soil Enzymes: A Key Driver of In Situ Enzyme Activity Rates , 2010 .

[60]  Anònim Anònim Keys to Soil Taxonomy , 2010 .

[61]  P. Mahadevan,et al.  An overview , 2007, Journal of Biosciences.

[62]  Masson-Delmotte,et al.  The Physical Science Basis , 2007 .

[63]  B. Berg,et al.  Litter Decomposition: a guide to Carbon and Nutrient Turnover , 2006 .

[64]  Jason G. Vogel,et al.  Soil and root respiration in mature Alaskan black spruce forests that vary in soil organic matter decomposition rates , 2005 .

[65]  Bart Nooteboom,et al.  A theoretical model , 2018 .

[66]  J. Baker,et al.  The Soil Freezing Characteristic: Its Measurement and Similarity to the Soil Moisture Characteristic , 1996 .

[67]  S. Laakso,et al.  Microbial fatty acids and thermal adaptation. , 1994, Critical reviews in microbiology.

[68]  A. Nordgren Apparatus for the continuous, long-term monitoring of soil respiration rate in large numbers of samples , 1988 .

[69]  S. Neidleman Effects of temperature on lipid unsaturation. , 1987, Biotechnology & genetic engineering reviews.

[70]  Robert C. Wolpert,et al.  A Review of the , 1985 .

[71]  R. M. Kroppenstedt Fatty acid and menaquinone analysis of actinomycetes and related organisms , 1985 .

[72]  Duwayne M. Anderson,et al.  PREDICTING UNFROZEN WATER CONTENTS IN FROZEN SOILS FROM SURFACE AREA MEASUREMENTS , 1972 .