Segmentation 3D multi-objets d'images scanner cardiaques : une approche multi-agents 3D Multi-Object Segmentation of Cardiac MSCT Imaging by using a Multi- Agent Approach

We propose a new technique for general purpose, semi-interactive and multi-object segmentation in Ndimensional images, applied to the extraction of cardiac structures in MultiSlice Computed Tomography (MSCT) imaging. The proposed approach makes use of a multi-agent scheme combined with a supervised classification methodology allowing the introduction of a priori information and presenting fast computing times. The multi-agent system is organised around a communicating agent which manages a population of situated agents which segment the image through cooperative and competitive interactions. The proposed technique has been tested on several patient data sets. Some typical results are finally presented and discussed.

[1]  Olivier Ecabert,et al.  Automatic Model-Based Segmentation of the Heart in CT Images , 2008, IEEE Transactions on Medical Imaging.

[2]  Daniel Rueckert,et al.  Segmentation of 4D Cardiac MR Images Using a Probabilistic Atlas and the EM Algorithm , 2003, MICCAI.

[3]  Demetri Terzopoulos,et al.  Snakes: Active contour models , 2004, International Journal of Computer Vision.

[4]  Jayaram K. Udupa,et al.  User-Steered Image Segmentation Paradigms: Live Wire and Live Lane , 1998, Graph. Model. Image Process..

[5]  Hervé Delingette,et al.  Deformable biomechanical models: Application to 4D cardiac image analysis , 2003, Medical Image Anal..

[6]  Demetri Terzopoulos,et al.  Deformable models in medical image analysis: a survey , 1996, Medical Image Anal..

[7]  A. Herment,et al.  Développement et évaluation d’une méthode de segmentation automatique de l’endocarde sur des images acquises par résonance magnétique , 2007 .

[8]  Max A. Viergever,et al.  Automatic cardiac MRI myocardium segmentation using graphcut , 2006, SPIE Medical Imaging.

[9]  Alejandro F. Frangi,et al.  Three-dimensional modeling for functional analysis of cardiac images, a review , 2001, IEEE Transactions on Medical Imaging.

[10]  Laurent D. Cohen,et al.  Finite-Element Methods for Active Contour Models and Balloons for 2-D and 3-D Images , 1993, IEEE Trans. Pattern Anal. Mach. Intell..

[11]  Jayaram K. Udupa,et al.  Relative Fuzzy Connectedness and Object Definition: Theory, Algorithms, and Applications in Image Segmentation , 2002, IEEE Trans. Pattern Anal. Mach. Intell..

[12]  Catherine Garbay,et al.  Automated segmentation of human brain MR images using a multi-agent approach , 2004, Artif. Intell. Medicine.

[13]  Johan Montagnat,et al.  4D deformable models with temporal constraints: application to 4D cardiac image segmentation , 2005, Medical Image Anal..

[14]  Vladimir Kolmogorov,et al.  An experimental comparison of min-cut/max- flow algorithms for energy minimization in vision , 2001, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[15]  Alejandro F. Frangi,et al.  Automatic construction of multiple-object three-dimensional statistical shape models: application to cardiac modeling , 2002, IEEE Transactions on Medical Imaging.

[16]  X FalcãoAlexandre,et al.  User-steered image segmentation paradigms , 1998 .

[17]  Marie-Pierre Jolly,et al.  Automatic Segmentation of the Left Ventricle in Cardiac MR and CT Images , 2006, International Journal of Computer Vision.

[18]  J. Fleureau,et al.  Assessment of global cardiac function in MSCT imaging using fuzzy connectedness segmentation , 2008, 2008 Computers in Cardiology.

[19]  J. Sethian,et al.  Fronts propagating with curvature-dependent speed: algorithms based on Hamilton-Jacobi formulations , 1988 .

[20]  Supun Samarasekera,et al.  Fuzzy Connectedness and Object Definition: Theory, Algorithms, and Applications in Image Segmentation , 1996, CVGIP Graph. Model. Image Process..

[21]  William E. Lorensen,et al.  Marching cubes: A high resolution 3D surface construction algorithm , 1987, SIGGRAPH.

[22]  N. Paragios A level set approach for shape-driven segmentation and tracking of the left ventricle , 2003, IEEE Transactions on Medical Imaging.

[23]  Alan L. Yuille,et al.  Region Competition: Unifying Snakes, Region Growing, and Bayes/MDL for Multiband Image Segmentation , 1996, IEEE Trans. Pattern Anal. Mach. Intell..

[24]  Junaed Sattar Snakes , Shapes and Gradient Vector Flow , 2022 .