Progress in nonlinear optical materials for high power lasers

Abstract Over the last few years, substantial progress has been made at the Lawrence Livermore National Laboratory in nonlinear materials for high power laser applications. Specifically, we are developing materials for frequency conversion of lasers used in laser driven, thermonuclear fusion experiments and in high average power laser systems. We have developed new experimental procedures for fully characterizing the linear and nonlinear optical properties of microcrystals. Using new theoretical results we have developed a systematic method of selecting and optimizing nonlinear crystals for high-power and high-average-power laser applications. Our molecular engineering strategy for developing new materials for the fusion application has resulted in the discovery of several new materials with more attractive parameters than KDP.

[1]  R. W. Terhune,et al.  Effects of Dispersion and Focusing on the Production of Optical Harmonics , 1962 .

[2]  D. Eimerl,et al.  High average power harmonic generation , 1987 .

[3]  S. K. Kurtz,et al.  A Powder Technique for the Evaluation of Nonlinear Optical Materials , 1968 .

[4]  R. Hierle,et al.  Chapter II-4 – Growth and Characterization of Molecular Crystals , 1987 .

[5]  W. Bond Measurement of the Refractive Indices of Several Crystals , 1965 .

[6]  Stephen D. Jacobs,et al.  Basic properties of KDP related to the frequency conversion of 1 µm laser radiation , 1981 .

[7]  David Eimerl Frequency Conversion Materials From A Device Perspective , 1987, Optics & Photonics.

[8]  S. Velsko,et al.  Synthesis and characterization of chemical analogs of L-arginine phosphate , 1987 .

[9]  D. F. Eaton,et al.  Nonlinear Optical Materials , 1991, Science.

[10]  D. F. Hays,et al.  Table of Integrals, Series, and Products , 1966 .

[11]  J. Hunt,et al.  High power pulsed lasers , 1980 .

[12]  P. Zuman,et al.  Electronic absorption of carboxylic acids and their anions , 1976 .

[13]  David Eimerl,et al.  Optical, mechanical, and thermal properties of barium borate , 1987 .

[14]  Robert S. Feigelson,et al.  Single Crystal Fibers By The Laser-Heated Pedestal Growth Method , 1984, Other Conferences.

[15]  R. Twieg,et al.  Organic Materials for Optical Second Harmonic Generation , 1983 .

[16]  David Eimerl,et al.  Deuterated L-arginine phosphate: a new efficient nonlinear crystal , 1988 .

[17]  Stewart K. Kurtz,et al.  3 – Measurement of Nonlinear Optical Susceptibilities , 1975 .

[18]  F. Donald Bloss,et al.  The Spindle Stage: Principles and Practice , 1981 .

[19]  M. V. Hobden Phase‐Matched Second‐Harmonic Generation in Biaxial Crystals , 1967 .

[20]  J. F. Holzrichter,et al.  Research with High-Power Short-Wavelength Lasers , 1985, Science.

[21]  J. Giordmaine,et al.  Mixing of Light Beams in Crystals , 1962 .

[22]  Joseph Zyss,et al.  Nonlinear optical properties of organic molecules and crystals , 1987 .

[23]  D. Eimerl,et al.  Electro-optic, linear, and nonlinear optical properties of KDP and its isomorphs , 1987 .

[24]  David Eimerl,et al.  Thermal aspects of high-average-power electrooptic switches , 1987 .

[25]  Chuang-tian Chen,et al.  Recent Advances in Nonlinear Optical and Electro-Optical Materials , 1986 .

[26]  F. Donald Bloss,et al.  An introduction to the methods of optical crystallography , 1961 .

[27]  Stephan P. Velsko,et al.  Direct Assessment Of The Phase Matching Properties Of New Nonlinear Materials , 1987, Optics & Photonics.

[28]  S. Velsko,et al.  Second‐harmonic generation in sodium lanthanium fluoride , 1987 .

[29]  E Fabre,et al.  Fourth harmonic generation of a large-aperture Nd:glass laser. , 1985, Applied optics.

[30]  T. Fahlen,et al.  Calculations of optimum phase match parameters for the biaxial crystal KTiOPO4 , 1984 .