Bricks of Co, Ni doped Fe3O4 as high performing pseudocapacitor electrode

[1]  Seemita Banerjee,et al.  Nano Ni1-xCoxO system: Composition dependent phase evolution and electrochemical behaviour , 2022, Materials Chemistry and Physics.

[2]  A. Chandra,et al.  2D Flower-like Porous Nanostructures of Layered SnS2 for High-Performance Supercapacitors: Correlating Theoretical and Experimental Studies , 2022, ACS Applied Energy Materials.

[3]  M. Deyab,et al.  Progress study on nickel ferrite alloy-graphene nanosheets nanocomposites as supercapacitor electrodes , 2022, Journal of Energy Storage.

[4]  F. Blaabjerg,et al.  A Comprehensive Review on Supercapacitor Applications and Developments , 2022, Energies.

[5]  B. Dubey,et al.  Role of porosity and diffusion coefficient in porous electrode used in supercapacitors – Correlating theoretical and experimental studies , 2022, Electrochemical Science Advances.

[6]  A. Chandra,et al.  Superior-catalytic performance of Ni–Co layered double hydroxide nanosheets for the reduction of p-nitrophenol , 2022, International Journal of Hydrogen Energy.

[7]  Xudong Zhao,et al.  Synthesis of transition metal cation decorated nickel molybdate nanoarrays on nickel foam and their applications in high-performance battery-supercapacitor hybrid devices , 2021 .

[8]  S. Thangarasu,et al.  Investigations on ternary transition metal ferrite: NiCoFe2O4 as potential electrode for supercapacitor prepared by microwave irradiation method , 2021, Journal of Energy Storage.

[9]  M. Khalid,et al.  Rapid microwave-assisted synthesis of MnCo2O4 nanoflakes as a cathode for battery-supercapacitor hybrid , 2021, Journal of Energy Storage.

[10]  Min-Yuan Shen,et al.  Application and prospect of supercapacitors in Internet of Energy (IOE) , 2021, Journal of Energy Storage.

[11]  P. S. Burada,et al.  High performance magnetic pseudocapacitors - Direct correlation between specific capacitance and diffusion coefficients , 2021, Electrochimica Acta.

[12]  S. Renukadevi,et al.  A novel microwave induced preparation of CuFe2O4/g-C3N4-based efficient photocatalyst for enhanced visible-light hydrogen evolution , 2021, Journal of Materials Science: Materials in Electronics.

[13]  V. Verenkar,et al.  An insight into the nanosize and bulk Ni0.5Co0.5Fe2O4 ferrites through their comparative study: Structural and magnetic investigations , 2021, Journal of Materials Science: Materials in Electronics.

[14]  M. M. Vadiyar,et al.  Superfast ice crystal-assisted synthesis of NiFe2O4 and ZnFe2O4 nanostructures for flexible high-energy density asymmetric supercapacitors , 2021 .

[15]  A. Jamil Cu2+ doped nickel spinel ferrites (Cu x Ni1−x Fe2O4) nanoparticles loaded on CNTs for degradation of crystal violet dye and antibacterial activity studies , 2021, Journal of Taibah University for Science.

[16]  P. S. Burada,et al.  Theoretical Model for Magnetic Supercapacitors—From the Electrode Material to Electrolyte Ion Dependence , 2020 .

[17]  Yang Ren,et al.  Bismuth Yttrium Oxide (Bi3YO6), A New Electrode Material For Asymmetric Aqueous Supercapacitors , 2020, Journal of Inorganic and Organometallic Polymers and Materials.

[18]  S. Sharifi,et al.  Incremental substitution of Ni with Mn in NiFe2O4 to largely enhance its supercapacitance properties , 2020, Scientific Reports.

[19]  N. R. Khalid,et al.  Role of cerium-doping in CoFe2O4 electrodes for high performance supercapacitors , 2020 .

[20]  D. Thatoi,et al.  Electrochemical Performance and Working Voltage Optimization of Nickel Ferrite/Graphene Composite based Supercapacitor , 2020, Journal of Inorganic and Organometallic Polymers and Materials.

[21]  S. Jun,et al.  New insight into the effect of fluorine doping and oxygen vacancies on electrochemical performance of Co2MnO4 for flexible quasi-solid-state asymmetric supercapacitors , 2019, Energy Storage Materials.

[22]  A. Iqbal,et al.  NiCo2S4 nanosheet grafted SiO2@C core-shelled spheres as a novel electrode for high performance supercapacitors , 2019, Nanotechnology.

[23]  Yiwu Mao,et al.  A Simple Electrochemical Route to Access Amorphous Co-Ni Hydroxide for Non-enzymatic Glucose Sensing , 2019, Nanoscale Research Letters.

[24]  A. Ghasemi,et al.  Synthesis of Novel NiFe2O4 Nanospheres for High Performance Pseudocapacitor Applications , 2019, Russian Journal of Electrochemistry.

[25]  M. Lusi,et al.  A mixed molecular salt of lithium and sodium breaks the Hume-Rothery rules for solid solutions. , 2019, Chemical communications.

[26]  Weili Wang,et al.  Morphology-controllable preparation of NiFe2O4 as high performance electrode material for supercapacitor , 2019, Electrochimica Acta.

[27]  Gurmeet Singh,et al.  Edge enriched cobalt ferrite nanorods for symmetric/asymmetric supercapacitive charge storage , 2018, Electrochimica Acta.

[28]  Vikas Sharma,et al.  Need for Revisiting the Use of Magnetic Oxides as Electrode Materials in Supercapacitors: Unequivocal Evidence of Significant Variation in Specific Capacitance under Variable Magnetic Field , 2018 .

[29]  A. Sakunthala,et al.  Pure and cobalt-substituted zinc-ferrite magnetic ceramics for supercapacitor applications , 2018, Applied Physics A.

[30]  S. Jun,et al.  Effect of cation substitution on the pseudocapacitive performance of spinel cobaltite MCo2O4 (M = Mn, Ni, Cu, and Co) , 2018 .

[31]  A. Grace,et al.  A comparative study on the supercapacitive behaviour of solvothermally prepared metal ferrite (MFe2O4, M = Fe, Co, Ni, Mn, Cu, Zn) nanoassemblies , 2018 .

[32]  Jiří Vondrák,et al.  Supercapacitors: Properties and applications , 2018, Journal of Energy Storage.

[33]  R. Navamathavan,et al.  Electrochemical investigation of manganese ferrites prepared via a facile synthesis route for supercapacitor applications , 2018 .

[34]  A. Salker,et al.  Tailoring magnetic and dielectric properties of Co0.9Cu0.1Fe2O4 with substitution of small fractions of Gd3+ ions , 2018, Journal of Materials Science: Materials in Electronics.

[35]  Y. Cho,et al.  Facile synthesis of NiAl layered double hydroxide nanoplates for high-performance asymmetric supercapacitor , 2017 .

[36]  Y. Cho,et al.  Ultrathin petal-like NiAl layered double oxide/sulfide composites as an advanced electrode for high-performance asymmetric supercapacitors , 2017 .

[37]  Zikang Tang,et al.  Hierarchical chestnut-like MnCo2O4 nanoneedles grown on nickel foam as binder-free electrode for high energy density asymmetric supercapacitors , 2016 .

[38]  F. Tudorache,et al.  Studies on the structure and gas sensing properties of nickel-cobalt ferrite thin films prepared by spin coating , 2013 .

[39]  A. Salker,et al.  Influence of Co2+ distribution and spin-orbit coupling on the resultant magnetic properties of spinel cobalt ferrite nanocrystals , 2013 .

[40]  David R. Smith,et al.  Controlled-reflectance surfaces with film-coupled colloidal nanoantennas , 2012, Nature.

[41]  N. Kamoun,et al.  Synthesis and characterization of nanocrystallized In2S3 thin films via CBD technique , 2011 .

[42]  S. C. Mojumdar,et al.  Synthesis and characterization of Ni0.6Zn0.4Fe2O4 nano-particles obtained by auto catalytic thermal decomposition of carboxylato-hydrazinate complex , 2011 .

[43]  Lili Zhang,et al.  Carbon-based materials as supercapacitor electrodes. , 2009, Chemical Society reviews.

[44]  N. S. McIntyre,et al.  Investigation of multiplet splitting of Fe 2p XPS spectra and bonding in iron compounds , 2004 .

[45]  Yiqiang Wu,et al.  N-doped and oxygen vacancy-rich NiCo2O4 nanograss for supercapacitor electrode , 2022, Chemical Engineering Journal.

[46]  E. Cevik,et al.  Synthesis and design of vanadium intercalated spinal ferrite (Co0.5Ni0.5VxFe1.6−xO4) electrodes for high current supercapacitor applications , 2022, Journal of Energy Storage.

[47]  N. Kim,et al.  0D to 3D carbon-based networks combined with pseudocapacitive electrode material for high energy density supercapacitor: A review , 2021 .

[48]  S. Bose,et al.  Carbon-based nanostructured materials and their composites as supercapacitor electrodes , 2012 .