Sdpha: a Matlab implementation of homogeneous interior-point algorithms for semidefinite programming

Mehrotra type primal-dual predictor-corrector interior-point algorithms for semidefinite programming are implemented, using the homogeneous formulation proposed and analyzed by Potra and Sheng. Several search directions, including the AHO, HKM, NT, Toh, and Gu directions, are used. A rank-2 update technique is employed in our MATLAB code so that the computation of homogeneous directions is only slightly more expensive than in the non-homogeneous case. However, the homogeneous algorithms generally take fewer iterations to compute an approximate solution within a desired accuracy. Numerical results show that the homogeneous algorithms outperform their non-homogeneous counterparts, with improvement of more than 20% in many cases, in terms of total CPU time.

[1]  Michael L. Overton,et al.  SDPPACK User''s Guide -- Version 0.8 Beta , 1977 .

[2]  Sanjay Mehrotra,et al.  On the Implementation of a Primal-Dual Interior Point Method , 1992, SIAM J. Optim..

[3]  Shinji Mizuno,et al.  On Adaptive-Step Primal-Dual Interior-Point Algorithms for Linear Programming , 1993, Math. Oper. Res..

[4]  R. Vanderbei,et al.  An Interior-point Method for Semideenite Programming an Interior-point Method for Semideenite Programming , 1994 .

[5]  F. Potra,et al.  Homogeneous Interior{point Algorithms for Semideenite Programming , 1995 .

[6]  Shinji Hara,et al.  Interior Point Methods for the Monotone Linear Complementarity Problem in Symmetric Matrices , 1995 .

[7]  Robert J. Vanderbei,et al.  An Interior-Point Method for Semidefinite Programming , 1996, SIAM J. Optim..

[8]  Kim-Chuan Toh,et al.  SDPT3 -- A Matlab Software Package for Semidefinite Programming , 1996 .

[9]  Renato D. C. Monteiro,et al.  Primal-Dual Path-Following Algorithms for Semidefinite Programming , 1997, SIAM J. Optim..

[10]  Shinji Hara,et al.  Interior-Point Methods for the Monotone Semidefinite Linear Complementarity Problem in Symmetric Matrices , 1997, SIAM J. Optim..

[11]  Michael L. Overton,et al.  Primal-Dual Interior-Point Methods for Semidefinite Programming: Convergence Rates, Stability and Numerical Results , 1998, SIAM J. Optim..

[12]  Michael J. Todd,et al.  Primal-Dual Interior-Point Methods for Self-Scaled Cones , 1998, SIAM J. Optim..

[13]  Renato D. C. Monteiro,et al.  Polynomial Convergence of Primal-Dual Algorithms for Semidefinite Programming Based on the Monteiro and Zhang Family of Directions , 1998, SIAM J. Optim..

[14]  Masakazu Kojima,et al.  Local convergence of predictor—corrector infeasible-interior-point algorithms for SDPs and SDLCPs , 1998, Math. Program..

[15]  Yin Zhang,et al.  On Extending Some Primal-Dual Interior-Point Algorithms From Linear Programming to Semidefinite Programming , 1998, SIAM J. Optim..

[16]  Yin Zhang,et al.  A unified analysis for a class of long-step primal-dual path-following interior-point algorithms for semidefinite programming , 1998, Math. Program..

[17]  F. Potra,et al.  On homogeneous interrior-point algorithms for semidefinite programming , 1998 .

[18]  Florian A. Potra,et al.  A Superlinearly Convergent Primal-Dual Infeasible-Interior-Point Algorithm for Semidefinite Programming , 1998, SIAM J. Optim..

[19]  Kim-Chuan Toh,et al.  On the Nesterov-Todd Direction in Semidefinite Programming , 1998, SIAM J. Optim..

[20]  Masakazu Kojima,et al.  A Predictor-corrector Interior-point Algorithm for the Semidenite Linear Complementarity Problem Using the Alizadeh-haeberly-overton Search Direction , 1996 .