On the computational complexity of the Dirichlet Problem for Poisson's Equation

The last years have seen an increasing interest in classifying (existence claims in) classical mathematical theorems according to their strength. We pursue this goal from the refined perspective of computational complexity. Specifically, we establish that rigorously solving the Dirichlet Problem for Poisson's Equation is in a precise sense ‘complete’ for the complexity class ${\#\mathcal{P}}$ and thus as hard or easy as parametric Riemann integration (Friedman 1984; Ko 1991. Complexity Theory of Real Functions ).

[1]  Norbert Th. Müller,et al.  Uniform Computational Complexity of Taylor Series , 1987, ICALP.

[2]  Ker-I Ko The Maximum Value Problem and NP Real Numbers , 1982, J. Comput. Syst. Sci..

[3]  L. Blumenson A Derivation of n-Dimensional Spherical Coordinates , 1960 .

[4]  Ning Zhong Derivatives of Computable Functions , 1998, Math. Log. Q..

[5]  Ker-I Ko,et al.  On the Computational Complexity of Integral Equations , 1992, Ann. Pure Appl. Log..

[6]  Amaury Pouly,et al.  Computability and Computational Complexity of the Evolution of Nonlinear Dynamical Systems , 2013, CiE.

[7]  Carsten Rösnick-Neugebauer,et al.  Closed Sets and Operators thereon: Representations, Computability and Complexity , 2017, Log. Methods Comput. Sci..

[8]  Klaus Weihrauch,et al.  Computable analysis of the abstract Cauchy problem in a Banach space and its applications I , 2007, Math. Log. Q..

[9]  Klaus Weihrauch,et al.  Computing the solution of the Korteweg-de Vries equation with arbitrary precision on Turing , 2005, Theor. Comput. Sci..

[10]  Akitoshi Kawamura,et al.  Computational Complexity in Analysis and Geometry , 2011 .

[11]  Stephen A. Cook,et al.  Complexity Theory for Operators in Analysis , 2012, TOCT.

[12]  H. Friedman,et al.  The computational complexity of maximization and integration , 1984 .

[13]  A. Turing On Computable Numbers, with an Application to the Entscheidungsproblem. , 1937 .

[14]  Ker-I Ko Inverting a One-to-One Real Function Is Inherently Sequential , 1990 .

[15]  Akitoshi Kawamura,et al.  Computational Complexity of Smooth Differential Equations , 2012, MFCS.

[16]  Henri Lombardi,et al.  Espaces métriques rationnellement présentés et complexité, le cas de l'espace des fonctions réelles uniformément continues sur un intervalle compact , 2001, Theor. Comput. Sci..

[17]  Ker-I Ko,et al.  Computational Complexity of Real Functions , 1982, Theor. Comput. Sci..

[18]  Klaus Weihrauch,et al.  Is wave propagation computable or can wave computers beat the turing machine? , 2002 .

[19]  David S. Johnson,et al.  Computers and Intractability: A Guide to the Theory of NP-Completeness , 1978 .

[20]  D. Gilbarg,et al.  Elliptic Partial Differential Equa-tions of Second Order , 1977 .

[21]  Mark Braverman,et al.  On the complexity of real functions , 2005, 46th Annual IEEE Symposium on Foundations of Computer Science (FOCS'05).

[22]  G. Morera Sulle derivate seconde della funzione potenziale di spazio , 1887 .

[23]  Akitoshi Kawamura,et al.  Lipschitz Continuous Ordinary Differential Equations are Polynomial-Space Complete , 2009, 2009 24th Annual IEEE Conference on Computational Complexity.

[24]  Georg Schnitger,et al.  Parallel Computation with Threshold Functions , 1988, J. Comput. Syst. Sci..

[25]  Klaus Weihrauch,et al.  An Algorithm for Computing Fundamental Solutions , 2006, SIAM J. Comput..

[26]  Vasco Brattka,et al.  Towards computability of elliptic boundary value problems in variational formulation , 2006, J. Complex..

[27]  Ernst Wienholtz,et al.  Elliptische Differentialgleichungen zweiter Ordnung , 2009 .

[28]  Seinosuke Toda,et al.  PP is as Hard as the Polynomial-Time Hierarchy , 1991, SIAM J. Comput..

[29]  Shu-Ming Sun,et al.  On Computability of Navier-Stokes' Equation , 2015, CiE.

[30]  Marian Boykan Pour-El,et al.  Computability in analysis and physics , 1989, Perspectives in Mathematical Logic.

[31]  A. Grzegorczyk On the definitions of computable real continuous functions , 1957 .

[32]  Ker-I Ko,et al.  Complexity Theory of Real Functions , 1991, Progress in Theoretical Computer Science.