On the computational complexity of the Dirichlet Problem for Poisson's Equation
暂无分享,去创建一个
Akitoshi Kawamura | Martin Ziegler | Florian Steinberg | M. Ziegler | Florian Steinberg | A. Kawamura
[1] Norbert Th. Müller,et al. Uniform Computational Complexity of Taylor Series , 1987, ICALP.
[2] Ker-I Ko. The Maximum Value Problem and NP Real Numbers , 1982, J. Comput. Syst. Sci..
[3] L. Blumenson. A Derivation of n-Dimensional Spherical Coordinates , 1960 .
[4] Ning Zhong. Derivatives of Computable Functions , 1998, Math. Log. Q..
[5] Ker-I Ko,et al. On the Computational Complexity of Integral Equations , 1992, Ann. Pure Appl. Log..
[6] Amaury Pouly,et al. Computability and Computational Complexity of the Evolution of Nonlinear Dynamical Systems , 2013, CiE.
[7] Carsten Rösnick-Neugebauer,et al. Closed Sets and Operators thereon: Representations, Computability and Complexity , 2017, Log. Methods Comput. Sci..
[8] Klaus Weihrauch,et al. Computable analysis of the abstract Cauchy problem in a Banach space and its applications I , 2007, Math. Log. Q..
[9] Klaus Weihrauch,et al. Computing the solution of the Korteweg-de Vries equation with arbitrary precision on Turing , 2005, Theor. Comput. Sci..
[10] Akitoshi Kawamura,et al. Computational Complexity in Analysis and Geometry , 2011 .
[11] Stephen A. Cook,et al. Complexity Theory for Operators in Analysis , 2012, TOCT.
[12] H. Friedman,et al. The computational complexity of maximization and integration , 1984 .
[13] A. Turing. On Computable Numbers, with an Application to the Entscheidungsproblem. , 1937 .
[14] Ker-I Ko. Inverting a One-to-One Real Function Is Inherently Sequential , 1990 .
[15] Akitoshi Kawamura,et al. Computational Complexity of Smooth Differential Equations , 2012, MFCS.
[16] Henri Lombardi,et al. Espaces métriques rationnellement présentés et complexité, le cas de l'espace des fonctions réelles uniformément continues sur un intervalle compact , 2001, Theor. Comput. Sci..
[17] Ker-I Ko,et al. Computational Complexity of Real Functions , 1982, Theor. Comput. Sci..
[18] Klaus Weihrauch,et al. Is wave propagation computable or can wave computers beat the turing machine? , 2002 .
[19] David S. Johnson,et al. Computers and Intractability: A Guide to the Theory of NP-Completeness , 1978 .
[20] D. Gilbarg,et al. Elliptic Partial Differential Equa-tions of Second Order , 1977 .
[21] Mark Braverman,et al. On the complexity of real functions , 2005, 46th Annual IEEE Symposium on Foundations of Computer Science (FOCS'05).
[22] G. Morera. Sulle derivate seconde della funzione potenziale di spazio , 1887 .
[23] Akitoshi Kawamura,et al. Lipschitz Continuous Ordinary Differential Equations are Polynomial-Space Complete , 2009, 2009 24th Annual IEEE Conference on Computational Complexity.
[24] Georg Schnitger,et al. Parallel Computation with Threshold Functions , 1988, J. Comput. Syst. Sci..
[25] Klaus Weihrauch,et al. An Algorithm for Computing Fundamental Solutions , 2006, SIAM J. Comput..
[26] Vasco Brattka,et al. Towards computability of elliptic boundary value problems in variational formulation , 2006, J. Complex..
[27] Ernst Wienholtz,et al. Elliptische Differentialgleichungen zweiter Ordnung , 2009 .
[28] Seinosuke Toda,et al. PP is as Hard as the Polynomial-Time Hierarchy , 1991, SIAM J. Comput..
[29] Shu-Ming Sun,et al. On Computability of Navier-Stokes' Equation , 2015, CiE.
[30] Marian Boykan Pour-El,et al. Computability in analysis and physics , 1989, Perspectives in Mathematical Logic.
[31] A. Grzegorczyk. On the definitions of computable real continuous functions , 1957 .
[32] Ker-I Ko,et al. Complexity Theory of Real Functions , 1991, Progress in Theoretical Computer Science.