Superconducting fluctuations and charge-4$e$ plaquette state at strong coupling

,

[1]  Kun Yang,et al.  Exact solution for finite center-of-mass momentum Cooper pairing , 2022, Physical Review B.

[2]  Kenji Watanabe,et al.  Evidence for unconventional superconductivity in twisted trilayer graphene , 2022, Nature.

[3]  Dung-Hai Lee,et al.  Unconventional spectral signature of Tc in a pure d-wave superconductor , 2022, Nature.

[4]  P. Majumdar,et al.  Fermi arcs and pseudogap phase in a minimal microscopic model of d -wave superconductivity , 2021, Physical Review B.

[5]  Wéi Wú,et al.  Non-Fermi liquid phase and linear-in-temperature scattering rate in overdoped two-dimensional Hubbard model , 2021, Proceedings of the National Academy of Sciences of the United States of America.

[6]  M. Jiang Enhancing d -wave superconductivity with nearest-neighbor attraction in the extended Hubbard model , 2021, Physical Review B.

[7]  Jun Xu,et al.  Anisotropic Scattering Caused by Apical Oxygen Vacancies in Thin Films of Overdoped High-Temperature Cuprate Superconductors. , 2021, Physical review letters.

[8]  C. Zou,et al.  Particle–hole asymmetric superconducting coherence peaks in overdoped cuprates , 2021, Nature Physics.

[9]  P. Hirschfeld,et al.  Microscopic mechanism for fluctuating pair density wave , 2021 .

[10]  K. Nielsch,et al.  State with spontaneously broken time-reversal symmetry above the superconducting phase transition , 2021, Nature Physics.

[11]  Giorgio Nicoletti,et al.  Mutual Information Disentangles Interactions from Changing Environments. , 2021, Physical review letters.

[12]  Jian-Jun Dong,et al.  Mutual information, quantum phase transition, and phase coherence in Kondo systems , 2021, Physical Review B.

[13]  Zhuoyu Chen,et al.  Anomalously strong near-neighbor attraction in doped 1D cuprate chains , 2021, Science.

[14]  M. Charlebois,et al.  Information-theoretic measures of superconductivity in a two-dimensional doped Mott insulator , 2021, Proceedings of the National Academy of Sciences.

[15]  S. Huber,et al.  Statistical Physics through the Lens of Real-Space Mutual Information. , 2021, Physical review letters.

[16]  T. Klapwijk,et al.  Direct evidence for Cooper pairing without a spectral gap in a disordered superconductor above Tc , 2021, Science.

[17]  Haofei I. Wei,et al.  Vanishing nematic order beyond the pseudogap phase in overdoped cuprate superconductors , 2020, Proceedings of the National Academy of Sciences.

[18]  Zu-Yan Xu,et al.  Spectroscopic evidence of superconductivity pairing at 83 K in single-layer FeSe/SrTiO3 films , 2020, Nature Communications.

[19]  J. Nelson,et al.  Incoherent Cooper Pairing and Pseudogap Behavior in Single-Layer FeSe/SrTiO3 , 2020, Physical Review X.

[20]  Dung-Hai Lee,et al.  Superconductor-to-metal transition in overdoped cuprates , 2020, npj Quantum Materials.

[21]  R. Birgeneau,et al.  Superconducting Fluctuations in Overdoped Bi2Sr2CaCu2O8+δ , 2020, Physical Review X.

[22]  N. Brookes,et al.  Charge Density Waves in YBa_{2}Cu_{3}O_{6.67} Probed by Resonant X-Ray Scattering under Uniaxial Compression. , 2020, Physical review letters.

[23]  Yohai Bar-Sinai,et al.  Machine-learning iterative calculation of entropy for physical systems , 2020, Proceedings of the National Academy of Sciences.

[24]  Madhuparna Karmakar Pauli limited d-wave superconductors: quantum breached pair phase and thermal transitions , 2020, Journal of physics. Condensed matter : an Institute of Physics journal.

[25]  T. Wu,et al.  Preformed Cooper Pairs in Layered FeSe-Based Superconductors. , 2019, Physical review letters.

[26]  D. Natelson,et al.  Electron pairing in the pseudogap state revealed by shot noise in copper oxide junctions , 2019, Nature.

[27]  M. J. Ventura Ordering , 2019, Modes of Liability in International Criminal Law.

[28]  A. Hoekstra Equitability , 2019, The Water Footprint of Modern Consumer Society.

[29]  Alexander A. Alemi,et al.  On Variational Bounds of Mutual Information , 2019, ICML.

[30]  F. Assaad,et al.  Mutual information in heavy-fermion systems , 2018, Physical Review B.

[31]  N. P. Armitage,et al.  Locating the Missing Superconducting Electrons in the Overdoped Cuprates La_{2-x}Sr_{x}CuO_{4}. , 2018, Physical review letters.

[32]  B. Spivak,et al.  Colloquium : Anomalous metals: Failed superconductors , 2017, Reviews of Modern Physics.

[33]  Hongtao Yuan,et al.  Carrier density and disorder tuned superconductor-metal transition in a two-dimensional electron system , 2018, Nature Communications.

[34]  M. Sanquer,et al.  Collective energy gap of preformed Cooper pairs in disordered superconductors , 2018, Nature Physics.

[35]  R. Mondaini,et al.  Giant Magnetoresistance in Hubbard Chains. , 2018, Physical review letters.

[36]  Yoshua Bengio,et al.  Mutual Information Neural Estimation , 2018, ICML.

[37]  Z. Ringel,et al.  Mutual information, neural networks and the renormalization group , 2017, Nature Physics.

[38]  A. Bollinger,et al.  Dependence of the critical temperature in overdoped copper oxides on superfluid density , 2016, Nature.

[39]  Sanjeev Kumar,et al.  Effective Hamiltonian based Monte Carlo for the BCS to BEC crossover in the attractive Hubbard model , 2016, 1605.04641.

[40]  Piers Coleman,et al.  Introduction to Many-Body Physics , 2016 .

[41]  T. Devereaux,et al.  Fidelity study of superconductivity in extended Hubbard models , 2015, 1505.01127.

[42]  E. Dagotto,et al.  Parallelized traveling cluster approximation to study numerically spin-fermion models on large lattices. , 2015, Physical review. E, Statistical, nonlinear, and soft matter physics.

[43]  Aram Galstyan,et al.  Efficient Estimation of Mutual Information for Strongly Dependent Variables , 2014, AISTATS.

[44]  E. Dagotto,et al.  Testing the Monte Carlo–mean field approximation in the one-band Hubbard model , 2014, 1409.6790.

[45]  S. Sachdev,et al.  Connecting high-field quantum oscillations to zero-field electron spectral functions in the underdoped cuprates , 2014, Nature Communications.

[46]  P. Lee Amperean pairing and the pseudogap phase of cuprate superconductors , 2014, 1401.0519.

[47]  J. Kinney,et al.  Equitability, mutual information, and the maximal information coefficient , 2013, Proceedings of the National Academy of Sciences.

[48]  E. Dagotto,et al.  Nematic state of pnictides stabilized by interplay between spin, orbital, and lattice degrees of freedom. , 2013, Physical review letters.

[49]  Y. Yoshida,et al.  The origin and non-quasiparticle nature of Fermi arcs in Bi2Sr2CaCu2O8+δ , 2012, Nature Physics.

[50]  T. Speed A Correlation for the 21st Century , 2011, Science.

[51]  Michael Mitzenmacher,et al.  Detecting Novel Associations in Large Data Sets , 2011, Science.

[52]  Yue Wang,et al.  Phase-fluctuating superconductivity in overdoped La2-xSrxCuO4 , 2011 .

[53]  R. V. Aguilar,et al.  Temporal correlations of superconductivity above the transition temperature in La 2−x Sr x CuO 4 probed by terahertz spectroscopy , 2011, 1110.2097.

[54]  J. Orenstein,et al.  From a Single-Band Metal to a High-Temperature Superconductor via Two Thermal Phase Transitions , 2011, Science.

[55]  C. Dasgupta,et al.  Effect of pairing fluctuations on low-energy electronic spectra in cuprate superconductors , 2010, 1011.4543.

[56]  Y. Loh,et al.  Single- and two-particle energy gaps across the disorder-driven superconductor-insulator transition , 2010, 1011.3275.

[57]  Tao E. Li,et al.  Monte Carlo study of thermal fluctuations and Fermi-arc formation in d-wave superconductors , 2010, 1008.4191.

[58]  L. Benfatto,et al.  Phase fluctuations in a strongly disordered s-wave NbN superconductor close to the metal-insulator transition. , 2010, Physical review letters.

[59]  T. Kondo,et al.  Disentangling Cooper-pair formation above the transition temperature from the pseudogap state in the cuprates , 2010, 1005.5309.

[60]  V. L. Berezinskit DESTRUCTION OF LONG-RANGE ORDER IN ONE-DIMENSIONAL AND TWO-DIMENSIONAL SYSTEMS POSSESSING A CONTINUOUS SYMMETRY GROUP . II . QUANTUM , 2011 .

[61]  Z. Wang,et al.  Pseudogap and Fermi-arc evolution in the phase-fluctuation scenario , 2010, 1005.5497.

[62]  N. Ong,et al.  Diamagnetism and Cooper pairing above T c in cuprates , 2009, 0906.1823.

[63]  A. Greco Evidence for two competing order parameters in underdoped cuprate superconductors from a model analysis of Fermi-Arc effects. , 2009, Physical review letters.

[64]  H. Eisaki,et al.  Spectroscopic Fingerprint of Phase-Incoherent Superconductivity in the Underdoped Bi2Sr2CaCu2O8+δ , 2009, Science.

[65]  Peter E. Latham,et al.  Mutual Information , 2006 .

[66]  G. Gu,et al.  Emergence of preformed Cooper pairs from the doped Mott insulating state in Bi2Sr2CaCu2O8+δ , 2008, Nature.

[67]  B. Vignolle,et al.  Quantum oscillations in an overdoped high-Tc superconductor , 2008, Nature.

[68]  M. Randeria,et al.  Evidence for pairing above the transition temperature of cuprate superconductors from the electronic dispersion in the pseudogap phase. , 2008, Physical review letters.

[69]  Kun Yang,et al.  Fulde-Ferrell-Larkin-Ovchinnikov state in disordered s -wave superconductors , 2008, 0804.4492.

[70]  Z. Tes̆anović d-wave duality and its reflections in high-temperature superconductors , 2008 .

[71]  B. Spivak,et al.  Theory of quantum metal to superconductor transitions in highly conducting systems , 2008, 0803.2902.

[72]  E. Dagotto,et al.  Fermi arcs in the superconducting clustered state for underdoped cuprate superconductors. , 2008, Physical review letters.

[73]  D. Pines,et al.  Superconductivity without phonons , 2007, Nature.

[74]  E. Berg,et al.  Evolution of the Fermi surface of d-wave superconductors in the presence of thermal phase fluctuations. , 2007, Physical review letters.

[75]  Y. Avishai,et al.  Nature of the superconductor–insulator transition in disordered superconductors , 2007, Nature.

[76]  N. Harrison,et al.  Cuprate Fermi orbits and Fermi arcs: the effect of short-range antiferromagnetic order. , 2007, Physical review letters.

[77]  M. Randeria,et al.  Modeling the Fermi arc in underdoped cuprates. , 2007, 0708.1713.

[78]  A. Pasupathy,et al.  Visualizing pair formation on the atomic scale in the high-Tc superconductor Bi2Sr2CaCu2O8+δ , 2007, Nature.

[79]  S. Saigal,et al.  Relative performance of mutual information estimation methods for quantifying the dependence among short and noisy data. , 2007, Physical review. E, Statistical, nonlinear, and soft matter physics.

[80]  M. Randeria,et al.  Evolution of the pseudogap from Fermi arcs to the nodal liquid , 2006 .

[81]  P. Majumdar,et al.  A travelling cluster approximation for lattice fermions strongly coupled to classical degrees of freedom , 2006 .

[82]  E. Dagotto,et al.  Phase fluctuations in strongly coupled d-wave superconductors. , 2005, Physical review letters.

[83]  W. Su Phase separation and d-wave superconductivity in a two-dimensional extended Hubbard model with nearest-neighbor attractive interaction , 2004 .

[84]  G. Lonzarich,et al.  Density-fluctuation-mediated superconductivity , 2003, cond-mat/0309551.

[85]  B. Mitrović,et al.  Nodal quasiparticles and classical phase dluctuations in d-wave superconductors. , 2003, Physical review letters.

[86]  A. Kraskov,et al.  Estimating mutual information. , 2003, Physical review. E, Statistical, nonlinear, and soft matter physics.

[87]  W. Su,et al.  Phase Separation Due to Nearest Neighbor Attractive Interactions in a Two-Dimensional Model , 2003 .

[88]  C. Varma,et al.  Spontaneous breaking of time-reversal symmetry in the pseudogap state of a high-Tc superconductor , 2002, Nature.

[89]  W. Hanke,et al.  Pair phase fluctuations and the pseudogap , 2001, cond-mat/0110377.

[90]  G. Lonzarich,et al.  Magnetically mediated superconductivity in quasi-two and three dimensions , 2001 .

[91]  P. Hirschfeld,et al.  Observability of quantum phase fluctuations in cuprate superconductors. , 2000, Physical review letters.

[92]  M. Randeria,et al.  Effective actions and phase fluctuations in d-wave superconductors , 2000, cond-mat/0002349.

[93]  Igor Vajda,et al.  Estimation of the Information by an Adaptive Partitioning of the Observation Space , 1999, IEEE Trans. Inf. Theory.

[94]  M. Randeria,et al.  Role of Spatial Amplitude Fluctuations in Highly Disordered s-Wave Superconductors , 1998, cond-mat/9806060.

[95]  A. Millis,et al.  Phase fluctuations and spectral properties of underdoped cuprates , 1998, cond-mat/9805401.

[96]  M. Randeria,et al.  Spectroscopic evidence for a pseudogap in the normal state of underdoped high-Tc superconductors , 1996, Nature.

[97]  Dagotto,et al.  dx2-y2 superconductivity in a model of correlated fermions. , 1996, Physical review. B, Condensed matter.

[98]  V. J. Emery,et al.  Importance of phase fluctuations in superconductors with small superfluid density , 1995, Nature.

[99]  Carbotte,et al.  Properties of a two-dimensional D-wave superconductor from phenomenological susceptibility. , 1994, Physical review. B, Condensed matter.

[100]  Dagotto,et al.  Indications of dx2-y2 superconductivity in the two dimensional t-J model. , 1992, Physical review letters.

[101]  Pines,et al.  Toward a theory of high-temperature superconductivity in the antiferromagnetically correlated cuprate oxides. , 1991, Physical review letters.

[102]  Papanicolaou,et al.  Phase separation in a t-J model. , 1990, Physical review. B, Condensed matter.

[103]  J. Kosterlitz,et al.  The critical properties of the two-dimensional xy model , 1974 .

[104]  D. Thouless,et al.  Ordering, metastability and phase transitions in two-dimensional systems , 1973 .

[105]  N. D. Mermin,et al.  Crystalline Order in Two Dimensions , 1968 .

[106]  P. Hohenberg Existence of Long-Range Order in One and Two Dimensions , 1967 .