Direct Bayesian update of polynomial chaos representations

We present a fully deterministic approach to a probabilistic interpretation of inverse problems in which unknown quantities are represented by random fields or processes, described by a non-Gaussian prior distribution. The description of the introduced random fields is given in a ``white noise'' framework, which enables us to solve the stochastic forward problem through Galerkin projection onto polynomial chaos. With the help of such representation, the probabilistic identification problem is cast in a polynomial chaos expansion setting and the linear Bayesian form of updating. This representation leads to a corresponding new formulation of the minimum squared error estimator, obtained by its additional projection onto the polynomial chaos basis. By introducing the Hermite algebra this becomes a direct, purely algebraic way of computing the posterior, which is inexpensive to evaluate. In addition, we show that the well-known Kalman filter method is the low order part of this update. The proposed method has been tested on a stationary diffusion equation with prescribed source terms, characterised by an uncertain conductivity parameter which is then identified from limited and noisy data obtained by a measurement of the diffusing quantity.

[1]  Habib N. Najm,et al.  Stochastic spectral methods for efficient Bayesian solution of inverse problems , 2005, J. Comput. Phys..

[2]  LEXANDER,et al.  A Deterministic Filter for non-Gaussian Bayesian Estimation , 2011 .

[3]  Hermann G. Matthies,et al.  A deterministic filter for non-Gaussian Bayesian estimation— Applications to dynamical system estimation with noisy measurements , 2012 .

[4]  Philippe G. Ciarlet,et al.  The finite element method for elliptic problems , 2002, Classics in applied mathematics.

[5]  Roger Ghanem,et al.  Ingredients for a general purpose stochastic finite elements implementation , 1999 .

[6]  Emmanuel D. Blanchard,et al.  Polynomial Chaos Approaches to Parameter Estimation and Control Design for Mechanical Systems with Uncertain Parameters , 2010 .

[7]  R. Ghanem Stochastic Finite Elements For Heterogeneous Media with Multiple Random Non-Gaussian Properties , 1997 .

[8]  R. Ghanem,et al.  Stochastic Finite Elements: A Spectral Approach , 1990 .

[9]  Roger Ghanem,et al.  Numerical solution of spectral stochastic finite element systems , 1996 .

[10]  Adam Bowditch Stochastic Analysis , 2013 .

[11]  D. Luenberger Optimization by Vector Space Methods , 1968 .

[12]  Marcus Sarkis,et al.  Stochastic Galerkin Method for Elliptic Spdes: A White Noise Approach , 2006 .

[13]  A. Tarantola Popper, Bayes and the inverse problem , 2006 .

[14]  Alexander Litvinenko,et al.  Data Sparse Computation of the Karhunen-Loeve Expansion , 2008 .

[15]  George Christakos,et al.  Random Field Models in Earth Sciences , 1992 .

[16]  Christian Soize,et al.  Mathematics of random phenomena , 1986 .

[17]  Volker Schulz,et al.  Forward and Inverse Problems in Modeling of Multiphase Flow and Transport Through Porous Media , 2004 .

[18]  X. Frank Xu,et al.  A multiscale stochastic finite element method on elliptic problems involving uncertainties , 2007 .

[19]  Hermann G. Matthies,et al.  Application of hierarchical matrices for computing the Karhunen–Loève expansion , 2009, Computing.

[20]  Long Chen FINITE ELEMENT METHOD , 2013 .

[21]  Andrew M. Stuart,et al.  Inverse problems: A Bayesian perspective , 2010, Acta Numerica.

[22]  Maher Moakher,et al.  A Differential Geometric Approach to the Geometric Mean of Symmetric Positive-Definite Matrices , 2005, SIAM J. Matrix Anal. Appl..

[23]  George E. Karniadakis,et al.  Spectral Polynomial Chaos Solutions of the Stochastic Advection Equation , 2002, J. Sci. Comput..

[24]  S. E. Ahmed,et al.  Markov Chain Monte Carlo: Stochastic Simulation for Bayesian Inference , 2008, Technometrics.

[25]  H. Matthies Stochastic finite elements: Computational approaches to stochastic partial differential equations , 2008 .

[26]  Roger G. Ghanem,et al.  Identification of Bayesian posteriors for coefficients of chaos expansions , 2010, J. Comput. Phys..

[27]  Hermann G. Matthies,et al.  Uncertainty updating in the description of heterogeneous materials , 2010 .

[28]  H. Matthies,et al.  Finite elements for stochastic media problems , 1999 .

[29]  David Wooff,et al.  Bayes Linear Statistics , 2007 .

[30]  H. Matthies,et al.  Uncertainties in probabilistic numerical analysis of structures and solids-Stochastic finite elements , 1997 .

[31]  Nicholas Zabaras,et al.  An efficient Bayesian inference approach to inverse problems based on an adaptive sparse grid collocation method , 2009 .

[32]  Benjamin L. Pence,et al.  A maximum likelihood approach to recursive polynomial chaos parameter estimation , 2010, Proceedings of the 2010 American Control Conference.

[33]  Albert Tarantola,et al.  Inverse problem theory - and methods for model parameter estimation , 2004 .

[34]  Nicholas Ayache,et al.  Geometric Means in a Novel Vector Space Structure on Symmetric Positive-Definite Matrices , 2007, SIAM J. Matrix Anal. Appl..

[35]  Hermann G. Matthies,et al.  Galerkin methods for linear and nonlinear elliptic stochastic partial differential equations , 2005 .

[36]  R. Ghanem,et al.  Multi-resolution analysis of wiener-type uncertainty propagation schemes , 2004 .

[37]  Hermann G. Matthies,et al.  Solving stochastic systems with low-rank tensor compression , 2012 .

[38]  Nicholas Zabaras,et al.  Using Bayesian statistics in the estimation of heat source in radiation , 2005 .

[39]  D. Xiu,et al.  Modeling Uncertainty in Steady State Diffusion Problems via Generalized Polynomial Chaos , 2002 .

[40]  Dongbin Xiu,et al.  A generalized polynomial chaos based ensemble Kalman filter with high accuracy , 2009, J. Comput. Phys..

[41]  I. Babuska,et al.  Solving elliptic boundary value problems with uncertain coefficients by the finite element method: the stochastic formulation , 2005 .

[42]  Y. Marzouk,et al.  A stochastic collocation approach to Bayesian inference in inverse problems , 2009 .

[43]  Jean-Paul Chilès,et al.  Wiley Series in Probability and Statistics , 2012 .

[44]  James O. Berger,et al.  Markov chain Monte Carlo-based approaches for inference in computationally intensive inverse problems , 2003 .

[45]  Tamara G. Kolda,et al.  MATLAB tensor classes for fast algorithm prototyping. , 2004 .

[46]  Nicholas Zabaras,et al.  A non-intrusive stochastic Galerkin approach for modeling uncertainty propagation in deformation processes , 2007 .

[47]  Raúl Tempone,et al.  Galerkin Finite Element Approximations of Stochastic Elliptic Partial Differential Equations , 2004, SIAM J. Numer. Anal..

[48]  Panos G. Georgopoulos,et al.  Uncertainty reduction and characterization for complex environmental fate and transport models: An empirical Bayesian framework incorporating the stochastic response surface method , 2003 .

[49]  D. Stensrud,et al.  The Ensemble Kalman Filter for Combined State and Parameter Estimation , 2009 .

[50]  N. Cutland,et al.  On homogeneous chaos , 1991, Mathematical Proceedings of the Cambridge Philosophical Society.

[51]  N. Ayache,et al.  Log‐Euclidean metrics for fast and simple calculus on diffusion tensors , 2006, Magnetic resonance in medicine.

[52]  Boštjan Brank,et al.  Engineering structures under extreme conditions : multi-physics and multi-scale computer models in non-linear analysis and optimal design , 2005 .