Direct Bayesian update of polynomial chaos representations
暂无分享,去创建一个
Hermann G. Matthies | Alexander Litvinenko | Oliver Pajonk | H. Matthies | B. Rosi | A. Litvinenko | O. Pajonk | Bojana V. Rosi
[1] Habib N. Najm,et al. Stochastic spectral methods for efficient Bayesian solution of inverse problems , 2005, J. Comput. Phys..
[2] LEXANDER,et al. A Deterministic Filter for non-Gaussian Bayesian Estimation , 2011 .
[3] Hermann G. Matthies,et al. A deterministic filter for non-Gaussian Bayesian estimation— Applications to dynamical system estimation with noisy measurements , 2012 .
[4] Philippe G. Ciarlet,et al. The finite element method for elliptic problems , 2002, Classics in applied mathematics.
[5] Roger Ghanem,et al. Ingredients for a general purpose stochastic finite elements implementation , 1999 .
[6] Emmanuel D. Blanchard,et al. Polynomial Chaos Approaches to Parameter Estimation and Control Design for Mechanical Systems with Uncertain Parameters , 2010 .
[7] R. Ghanem. Stochastic Finite Elements For Heterogeneous Media with Multiple Random Non-Gaussian Properties , 1997 .
[8] R. Ghanem,et al. Stochastic Finite Elements: A Spectral Approach , 1990 .
[9] Roger Ghanem,et al. Numerical solution of spectral stochastic finite element systems , 1996 .
[10] Adam Bowditch. Stochastic Analysis , 2013 .
[11] D. Luenberger. Optimization by Vector Space Methods , 1968 .
[12] Marcus Sarkis,et al. Stochastic Galerkin Method for Elliptic Spdes: A White Noise Approach , 2006 .
[13] A. Tarantola. Popper, Bayes and the inverse problem , 2006 .
[14] Alexander Litvinenko,et al. Data Sparse Computation of the Karhunen-Loeve Expansion , 2008 .
[15] George Christakos,et al. Random Field Models in Earth Sciences , 1992 .
[16] Christian Soize,et al. Mathematics of random phenomena , 1986 .
[17] Volker Schulz,et al. Forward and Inverse Problems in Modeling of Multiphase Flow and Transport Through Porous Media , 2004 .
[18] X. Frank Xu,et al. A multiscale stochastic finite element method on elliptic problems involving uncertainties , 2007 .
[19] Hermann G. Matthies,et al. Application of hierarchical matrices for computing the Karhunen–Loève expansion , 2009, Computing.
[20] Long Chen. FINITE ELEMENT METHOD , 2013 .
[21] Andrew M. Stuart,et al. Inverse problems: A Bayesian perspective , 2010, Acta Numerica.
[22] Maher Moakher,et al. A Differential Geometric Approach to the Geometric Mean of Symmetric Positive-Definite Matrices , 2005, SIAM J. Matrix Anal. Appl..
[23] George E. Karniadakis,et al. Spectral Polynomial Chaos Solutions of the Stochastic Advection Equation , 2002, J. Sci. Comput..
[24] S. E. Ahmed,et al. Markov Chain Monte Carlo: Stochastic Simulation for Bayesian Inference , 2008, Technometrics.
[25] H. Matthies. Stochastic finite elements: Computational approaches to stochastic partial differential equations , 2008 .
[26] Roger G. Ghanem,et al. Identification of Bayesian posteriors for coefficients of chaos expansions , 2010, J. Comput. Phys..
[27] Hermann G. Matthies,et al. Uncertainty updating in the description of heterogeneous materials , 2010 .
[28] H. Matthies,et al. Finite elements for stochastic media problems , 1999 .
[29] David Wooff,et al. Bayes Linear Statistics , 2007 .
[30] H. Matthies,et al. Uncertainties in probabilistic numerical analysis of structures and solids-Stochastic finite elements , 1997 .
[31] Nicholas Zabaras,et al. An efficient Bayesian inference approach to inverse problems based on an adaptive sparse grid collocation method , 2009 .
[32] Benjamin L. Pence,et al. A maximum likelihood approach to recursive polynomial chaos parameter estimation , 2010, Proceedings of the 2010 American Control Conference.
[33] Albert Tarantola,et al. Inverse problem theory - and methods for model parameter estimation , 2004 .
[34] Nicholas Ayache,et al. Geometric Means in a Novel Vector Space Structure on Symmetric Positive-Definite Matrices , 2007, SIAM J. Matrix Anal. Appl..
[35] Hermann G. Matthies,et al. Galerkin methods for linear and nonlinear elliptic stochastic partial differential equations , 2005 .
[36] R. Ghanem,et al. Multi-resolution analysis of wiener-type uncertainty propagation schemes , 2004 .
[37] Hermann G. Matthies,et al. Solving stochastic systems with low-rank tensor compression , 2012 .
[38] Nicholas Zabaras,et al. Using Bayesian statistics in the estimation of heat source in radiation , 2005 .
[39] D. Xiu,et al. Modeling Uncertainty in Steady State Diffusion Problems via Generalized Polynomial Chaos , 2002 .
[40] Dongbin Xiu,et al. A generalized polynomial chaos based ensemble Kalman filter with high accuracy , 2009, J. Comput. Phys..
[41] I. Babuska,et al. Solving elliptic boundary value problems with uncertain coefficients by the finite element method: the stochastic formulation , 2005 .
[42] Y. Marzouk,et al. A stochastic collocation approach to Bayesian inference in inverse problems , 2009 .
[43] Jean-Paul Chilès,et al. Wiley Series in Probability and Statistics , 2012 .
[44] James O. Berger,et al. Markov chain Monte Carlo-based approaches for inference in computationally intensive inverse problems , 2003 .
[45] Tamara G. Kolda,et al. MATLAB tensor classes for fast algorithm prototyping. , 2004 .
[46] Nicholas Zabaras,et al. A non-intrusive stochastic Galerkin approach for modeling uncertainty propagation in deformation processes , 2007 .
[47] Raúl Tempone,et al. Galerkin Finite Element Approximations of Stochastic Elliptic Partial Differential Equations , 2004, SIAM J. Numer. Anal..
[48] Panos G. Georgopoulos,et al. Uncertainty reduction and characterization for complex environmental fate and transport models: An empirical Bayesian framework incorporating the stochastic response surface method , 2003 .
[49] D. Stensrud,et al. The Ensemble Kalman Filter for Combined State and Parameter Estimation , 2009 .
[50] N. Cutland,et al. On homogeneous chaos , 1991, Mathematical Proceedings of the Cambridge Philosophical Society.
[51] N. Ayache,et al. Log‐Euclidean metrics for fast and simple calculus on diffusion tensors , 2006, Magnetic resonance in medicine.
[52] Boštjan Brank,et al. Engineering structures under extreme conditions : multi-physics and multi-scale computer models in non-linear analysis and optimal design , 2005 .