Evidence that the endosomal sorting complex required for transport-II (ESCRT-II) is required for efficient human immunodeficiency virus-1 (HIV-1) production

[1]  D. Nachmias,et al.  Inhibition of ESCRT-II–CHMP6 interactions impedes cytokinetic abscission and leads to cell death , 2014, Molecular biology of the cell.

[2]  Prabuddha Sengupta,et al.  Distribution of ESCRT Machinery at HIV Assembly Sites Reveals Virus Scaffolding of ESCRT Subunits , 2014, Science.

[3]  Bo Meng,et al.  Wrapping up the bad news – HIV assembly and release , 2013, Retrovirology.

[4]  J. Hurley,et al.  In vitro reconstitution of the ordered assembly of the endosomal sorting complex required for transport at membrane-bound HIV-1 Gag clusters , 2012, Proceedings of the National Academy of Sciences.

[5]  Anne L’hernault,et al.  HIV-2 Genome Dimerization Is Required for the Correct Processing of Gag: a Second-Site Reversion in Matrix Can Restore Both Processes in Dimerization-Impaired Mutant Viruses , 2012, Journal of Virology.

[6]  W. Sundquist,et al.  ESCRT-III protein requirements for HIV-1 budding. , 2011, Cell host & microbe.

[7]  P. Bieniasz,et al.  Dynamics of ESCRT protein recruitment during retroviral assembly , 2011, Nature Cell Biology.

[8]  K. Nagashima,et al.  Basic Residues in the Nucleocapsid Domain of Gag Are Critical for Late Events of HIV-1 Budding , 2010, Journal of Virology.

[9]  J. Hurley,et al.  Membrane budding and scission by the ESCRT machinery: it's all in the neck , 2010, Nature Reviews Molecular Cell Biology.

[10]  S. Emr,et al.  ESCRT‐II coordinates the assembly of ESCRT‐III filaments for cargo sorting and multivesicular body vesicle formation , 2010, The EMBO journal.

[11]  J. Hurley,et al.  Molecular Mechanism of Multivesicular Body Biogenesis by ESCRT Complexes , 2010, Nature.

[12]  Karl Rohr,et al.  Dynamics of HIV-1 Assembly and Release , 2009, PLoS pathogens.

[13]  K. Nagashima,et al.  Functional role of Alix in HIV-1 replication. , 2009, Virology.

[14]  J. Hurley,et al.  Structure and function of the ESCRT-II-III interface in multivesicular body biogenesis. , 2009, Developmental cell.

[15]  Kunio Nagashima,et al.  The Nucleocapsid Region of HIV-1 Gag Cooperates with the PTAP and LYPXnL Late Domains to Recruit the Cellular Machinery Necessary for Viral Budding , 2009, PLoS pathogens.

[16]  Marc C. Johnson,et al.  Three-dimensional analysis of budding sites and released virus suggests a revised model for HIV-1 morphogenesis. , 2008, Cell host & microbe.

[17]  G. Medina,et al.  Avian Sarcoma Virus and Human Immunodeficiency Virus, Type 1 Use Different Subsets of ESCRT Proteins to Facilitate the Budding Process* , 2008, Journal of Biological Chemistry.

[18]  Sanford M. Simon,et al.  Imaging the biogenesis of individual HIV-1 virions in live cells , 2008, Nature.

[19]  J. Hurley,et al.  Integrated structural model and membrane targeting mechanism of the human ESCRT-II complex. , 2008, Developmental cell.

[20]  R. D. Fisher,et al.  ALIX-CHMP4 interactions in the human ESCRT pathway , 2008, Proceedings of the National Academy of Sciences.

[21]  B. Berkhout,et al.  RNA Structure Modulates Splicing Efficiency at the Human Immunodeficiency Virus Type 1 Major Splice Donor , 2007, Journal of Virology.

[22]  J. Hurley,et al.  Beyond Tsg101: the role of Alix in 'ESCRTing' HIV-1 , 2007, Nature Reviews Microbiology.

[23]  A. Brech,et al.  Vps22/EAP30 in ESCRT‐II Mediates Endosomal Sorting of Growth Factor and Chemokine Receptors Destined for Lysosomal Degradation , 2007, Traffic.

[24]  W. Sundquist,et al.  The molecular mechanism of hepcidin-mediated ferroportin down-regulation. , 2007, Molecular biology of the cell.

[25]  J. Martin-Serrano,et al.  Parallels Between Cytokinesis and Retroviral Budding: A Role for the ESCRT Machinery , 2007, Science.

[26]  R. D. Fisher,et al.  Structural and Biochemical Studies of ALIX/AIP1 and Its Role in Retrovirus Budding , 2007, Cell.

[27]  S. Emr,et al.  Structural insight into the ESCRT‐I/‐II link and its role in MVB trafficking , 2007, The EMBO journal.

[28]  R. D. Fisher,et al.  Human ESCRT-II Complex and Its Role in Human Immunodeficiency Virus Type 1 Release , 2006, Journal of Virology.

[29]  S. Emr,et al.  ESCRT-I Core and ESCRT-II GLUE Domain Structures Reveal Role for GLUE in Linking to ESCRT-I and Membranes , 2006, Cell.

[30]  P. Lehner,et al.  Degradation of Endocytosed Epidermal Growth Factor and Virally Ubiquitinated Major Histocompatibility Complex Class I Is Independent of Mammalian ESCRTII* , 2006, Journal of Biological Chemistry.

[31]  H. Stenmark,et al.  Eap45 in Mammalian ESCRT-II Binds Ubiquitin via a Phosphoinositide-interacting GLUE Domain*♦ , 2005, Journal of Biological Chemistry.

[32]  K. Jeang,et al.  Requirement of DDX3 DEAD Box RNA Helicase for HIV-1 Rev-RRE Export Function , 2004, Cell.

[33]  B. González,et al.  ESCRT-II, an endosome-associated complex required for protein sorting: crystal structure and interactions with ESCRT-III and membranes. , 2004, Developmental cell.

[34]  Scott D. Emr,et al.  Structure of the ESCRT-II endosomal trafficking complex , 2004, Nature.

[35]  P. Bieniasz,et al.  A Bipartite Late-Budding Domain in Human Immunodeficiency Virus Type 1 , 2003, Journal of Virology.

[36]  A. Calistri,et al.  AIP1/ALIX Is a Binding Partner for HIV-1 p6 and EIAV p9 Functioning in Virus Budding , 2003, Cell.

[37]  F. Holstege,et al.  Specific inhibition of gene expression using a stably integrated, inducible small‐interfering‐RNA vector , 2003, EMBO reports.

[38]  Wesley I. Sundquist,et al.  Functional Surfaces of the Human Immunodeficiency Virus Type 1 Capsid Protein , 2003, Journal of Virology.

[39]  E. Freed The HIV-TSG101 interface: recent advances in a budding field. , 2003, Trends in microbiology.

[40]  W. B. Snyder,et al.  Endosome-associated complex, ESCRT-II, recruits transport machinery for protein sorting at the multivesicular body. , 2002, Developmental cell.

[41]  J. Kappes,et al.  Emergence of Resistant Human Immunodeficiency Virus Type 1 in Patients Receiving Fusion Inhibitor (T-20) Monotherapy , 2002, Antimicrobial Agents and Chemotherapy.

[42]  E. Freed,et al.  Overexpression of the N-terminal domain of TSG101 inhibits HIV-1 budding by blocking late domain function , 2002, Proceedings of the National Academy of Sciences of the United States of America.

[43]  E. Freed,et al.  The Late Domain of Human Immunodeficiency Virus Type 1 p6 Promotes Virus Release in a Cell Type-Dependent Manner , 2002, Journal of Virology.

[44]  D. Kim,et al.  Improved expression of vascular endothelial growth factor by naked DNA in mouse skeletal muscles: implication for gene therapy of ischemic diseases. , 2000, Biochemical and biophysical research communications.

[45]  S. Emr,et al.  Mammalian Tumor Susceptibility Gene 101 (TSG101) and the Yeast Homologue, Vps23p, Both Function in Late Endosomal Trafficking , 2000, Traffic.

[46]  A. Shilatifard,et al.  Cloning and Characterization of the EAP30 Subunit of the ELL Complex That Confers Derepression of Transcription by RNA Polymerase II* , 1999, The Journal of Biological Chemistry.

[47]  B. Chesebro,et al.  Effects of CCR5 and CD4 Cell Surface Concentrations on Infections by Macrophagetropic Isolates of Human Immunodeficiency Virus Type 1 , 1998, Journal of Virology.

[48]  A. Lever,et al.  Helper virus-free transfer of human immunodeficiency virus type 1 vectors. , 1995, The Journal of general virology.

[49]  M. Emerman,et al.  Changes in growth properties on passage in tissue culture of viruses derived from infectious molecular clones of HIV-1LAI, HIV-1MAL, and HIV-1ELI. , 1991, Virology.

[50]  J. Sodroski,et al.  Effect of mutations affecting the p6 gag protein on human immunodeficiency virus particle release. , 1991, Proceedings of the National Academy of Sciences of the United States of America.

[51]  J. Kusari,et al.  Functional equivalents of interferon‐mediated signals needed for induction of an mRNA can be generated by double‐stranded RNA and growth factors. , 1987, The EMBO journal.

[52]  Amanda G. Fisher,et al.  A molecular clone of HTLV-III with biological activity , 1985, Nature.