The Impact of Environmental Stress on the Secondary Metabolites and the Chemical Compositions of the Essential Oils from Some Medicinal Plants Used as Food Supplements

This study aims to study the impact of environmental stresses on the chemical compositions of essential oils and the content of secondary metabolites of the plants most used by the rural population: Thymus vulgaris, Mentha pulégium and Rosmarinus officinalis. The results of the study indicate that the percentage of secondary metabolites increased in the second year when temperature and water pressure increased by 50%. Specifically, coumarin increased from 3.94% to 9.23%, saponins increased from 6.17% to 7.78%, tannins increased from 2.90% to 6.12%, alkaloids increased from 6.72% to 15.95%, and flavonoids increased from 7.42% to 12.90%. However, in the fourth year, the temperature continued to increase, and water availability decreased by 75%, leading to a decrease in the rate of secondary metabolites. Coumarin decreased from 9.22% to 6.15%, saponin decreased from 7.80% to 6.79%, tannin decreased from 6.11% to 4.16%, alkaloids decreased from 15.95% to 10.45%, and flavonoids decreased from 12.90% to 9.70%. Similar results were observed for the essential oil yield, which increased in year two from 3.57% to 3.84% and decreased in year four to 1.04%. The same pattern was observed for Mentha pulégium and Rosmarinus officinalis. The gas chromatography analysis of the three essential oil samples showed that the majority of the compounds of the three plants were modified under the conditions of climate change. For Mentha pulégium, pulegone was found to represent the highest proportion in sample two (73.3%), followed by sample one (71.1%), and finally, sample three (61.8%). For Rosmarinus officinalis, the majority of compounds were cineole and camphor, with cineole representing 36% in sample two, 45.89% in sample one, and 43.08% in sample three, and camphor representing 21.44% in sample two, 21.56% in sample three, and 17.44% in sample one. For Thymus vulgaris, the majority of the compounds were Thymol and Carvacrol, which underwent approximately the same modifications as the majority of compounds in the other two plants. The results indicate that environmental stresses can lead to significant changes in these compounds, which can affect the medicinal and aromatic properties of these plants. The findings of this study highlight the need for more research to understand the impacts of climate change on plant species and the potential implications for human health and well-being.

[1]  M. M. Qaderi,et al.  Environmental Factors Regulate Plant Secondary Metabolites , 2023, Plants.

[2]  Medicinal Plants: Their Response to Abiotic Stress , 2023 .

[3]  S. Micallef,et al.  Natural variation and drought-induced differences in metabolite profiles of red oak-leaf and Romaine lettuce play a role in modulating the interaction with Salmonella enterica. , 2022, International journal of food microbiology.

[4]  M. Bakar,et al.  Antimycobacterial Activity of Rosmarinus officinalis (Rosemary) Extracted by Deep Eutectic Solvents , 2022, Separations.

[5]  Y. Ez zoubi,et al.  Ethnobotanical survey of herbs used in the preservation of food products in Fez, Morocco , 2022, Journal of Ethnic Foods.

[6]  G. Yasin,et al.  Plants’ Physio-Biochemical and Phyto-Hormonal Responses to Alleviate the Adverse Effects of Drought Stress: A Comprehensive Review , 2022, Plants.

[7]  N. Puvača,et al.  Essential Oils in Broiler Chicken Production, Immunity and Meat Quality: Review of Thymus vulgaris, Origanum vulgare, and Rosmarinus officinalis , 2022, Agriculture.

[8]  Harun I. Gitari,et al.  Effects of Stress Modifier Biostimulants on Vegetative Growth, Nutrients, and Antioxidants Contents of Garden Thyme (Thymus vulgaris L.) Under Water Deficit Conditions , 2022, Journal of Plant Growth Regulation.

[9]  G. Cai,et al.  Environmental Stress and Plants , 2022, International journal of molecular sciences.

[10]  K. Hura,et al.  Drought-Stress Induced Physiological and Molecular Changes in Plants , 2022, International journal of molecular sciences.

[11]  A. Granell,et al.  Grafting improves tolerance to combined drought and heat stresses by modifying metabolism in citrus scion , 2022, Environmental and Experimental Botany.

[12]  R. Mittler,et al.  Responses of plants to climate change: Metabolic changes during abiotic stress combination in plants. , 2022, Journal of experimental botany.

[13]  G. Laidò,et al.  Specialized metabolites: Physiological and biochemical role in stress resistance, strategies to improve their accumulation, and new applications in crop breeding and management. , 2022, Plant physiology and biochemistry : PPB.

[14]  G. Zengin,et al.  Chemical composition and antioxidant activities of essential oils and extracts from cones of Tetraclinis articulata (Vahl) Masters , 2021, International Journal of Secondary Metabolite.

[15]  L. Lagnika,et al.  Ethnobotanical survey on medicinal plants traditionally used for treatment of intestinal parasitosis of animals and humans in Northern Benin , 2021 .

[16]  V. Shariati,et al.  Physiological response and secondary metabolites of three lavender genotypes under water deficit , 2021, Scientific Reports.

[17]  Sonia Osorio,et al.  Primary Metabolite Profile Changes in Coffea spp. Promoted by Single and Combined Exposure to Drought and Elevated CO2 Concentration , 2021, Metabolites.

[18]  M. Morshedloo,et al.  Water deficit stress changes in drug yield, antioxidant enzymes activity and essential oil quality and quantity of Tarragon (Artemisia dracunculus L.) , 2021 .

[19]  A. Benallou,et al.  Fort potentiel antifongique des huiles essentielles de Thymus vulgaris et Tetraclinis articulata , 2021, Phytothérapie.

[20]  M. Jordán,et al.  Assessment of Rosemary (Rosmarinus officinalis L.) Extract as Antioxidant in Jelly Candies Made with Fructan Fibres and Stevia , 2020, Antioxidants.

[21]  E. Bartkienė,et al.  Evaluation of the use of lactic acid bacteria and Thymus vulgaris essential oil on Suffolk and Ile de France lamb breed ( MuscuIus gluteus ) quality parameters , 2020 .

[22]  P. Mazzola,et al.  Rosemary (Rosmarinus officinalis L., syn Salvia rosmarinus Spenn.) and Its Topical Applications: A Review , 2020, Plants.

[23]  M. Ghorbanpour,et al.  Physiological responses and secondary metabolite ingredients in sage plants induced by 24-epibrassinolide foliar application under different water deficit regimes , 2020 .

[24]  Noureddine Chaachouay,et al.  Ethnobotanical and ethnopharmacological studies of medicinal and aromatic plants used in the treatment of metabolic diseases in the Moroccan Rif , 2019, Heliyon.

[25]  M. Beldi,et al.  Étude ethnobotanique et inventaire des plantes médicinales dans la région de Bougous , 2019, Bulletin de la Société Royale des Sciences de Liège.

[26]  M. Kribaa,et al.  Sewage sludge fertilization alleviates drought stress and improves physiological adaptation and yield performances in Durum Wheat (Triticum durum): A double-edged sword , 2017, Journal of King Saud University - Science.

[27]  M. Chraibi,et al.  Etude Ethnobotanique Sur L’utilisation De Mentha Pulegium, Mentha Piperita Et Pelargonium Graveolens Au Nord Du Maroc (Taounate) Et Évaluation De Leur Pouvoir Antimicrobien , 2018, European Scientific Journal, ESJ.

[28]  Baguia-Broune Fatou Diane Micheline,et al.  Saponines des racines de Securidaca longipedunculata (Polygalaceae) : quantification et évaluation anti-oxydante , 2018 .

[29]  M. Fekry,et al.  Foliar spraying of salicylic acid induced accumulation of phenolics, increased radical scavenging activity and modified the composition of the essential oil of water stressed Thymus vulgaris L. , 2018, Plant physiology and biochemistry : PPB.

[30]  N. Marchetti,et al.  Chemical Composition of Essential Oils from Thymus vulgaris, Cymbopogon citratus, and Rosmarinus officinalis, and Their Effects on the HIV‐1 Tat Protein Function , 2018, Chemistry & biodiversity.

[31]  B. Ihssane,et al.  Combined treatment of Thymus vulgaris L., Rosmarinus officinalis L. and Myrtus communis L. essential oils against Salmonella typhimurium: Optimization of antibacterial activity by mixture design methodology , 2017, European journal of pharmaceutics and biopharmaceutics : official journal of Arbeitsgemeinschaft fur Pharmazeutische Verfahrenstechnik e.V.

[32]  A. Latreche,et al.  Criblage phytochimique et activité antimicrobienne des extraits de Thymus serpyllum et de Thymus vulgaris du mont de Tessala (Algérie occidentale) , 2017, Phytothérapie.

[33]  Ü. Niinemets,et al.  Changes of secondary metabolites in Pinus sylvestris L. needles under increasing soil water deficit , 2017, Annals of Forest Science.

[34]  J. Abrini,et al.  Screening phytochimique et évaluation de l’activité antioxydante et antibactérienne des extraits d’Origanum compactum , 2017, Phytothérapie.

[35]  N. Tzortzakis,et al.  Effects of water stress on lavender and sage biomass production, essential oil composition and biocidal properties against Tetranychus urticae (Koch) , 2016 .

[36]  L. Nassiri,et al.  Ethnobotanical Survey of medicinal plants used in Zerhoun region -Morocco- , 2016 .

[37]  S. Hosseinzadeh,et al.  The Application of Medicinal Plants in Traditional and Modern Medicine: A Review of Thymus vulgaris , 2015 .

[38]  Ibijbijen Jamal,et al.  ETUDE ETHNOBOTANIQUE AU MOYEN ATLAS CENTRAL , 2015 .

[39]  A. Douira,et al.  Étude ethnobotanique des plantes médicinales utilisées dans le traitement du diabète, et des maladies cardiaques dans la région d’Izarène (Nord du Maroc) , 2015 .

[40]  G. Weingart,et al.  Severe drought stress is affecting selected primary metabolites, polyphenols, and volatile metabolites in grapevine leaves (Vitis vinifera cv. Pinot noir). , 2015, Plant physiology and biochemistry : PPB.

[41]  S. Rachiq,et al.  Étude ethnobotanique des plantes médicinales et aromatiques utilisées dans la ville de Fès au Maroc , 2015, Phytothérapie.

[42]  S. Soulama,et al.  Teneurs en tanins de 15 ligneux fourragers du Burkina Faso , 2014 .

[43]  T. Zair,et al.  Phytochemical study and insecticidal activity of Mentha pulegium L. oils from Morocco against Sitophilus Oryzae , 2013 .

[44]  A. Latreche,et al.  Quantification de quelques polyphénols de Marrubium vulgare L. du mont de Tessala (Algérie occidentale) pendant les deux périodes de végétation et de floraison , 2013 .

[45]  Y. Bousliman,et al.  Enquete sur les aspects toxicologiques de la phytotherapie utilisee par un herboriste à Fes, Maroc , 2013, The Pan African Medical Journal.

[46]  R. Farhoudi Effect of drought stress on chemical constituents, photosynthesis and antioxidant properties of Rosmarinus officinalis essential oil. , 2013 .

[47]  H. Lahsissene,et al.  Usages thérapeutiques traditionnels des plantes médicinales dans le Maroc occidental: cas de la région de Zaër , 2010, Phytothérapie.