Preference modeling on totally ordered sets by the Sugeno integral
暂无分享,去创建一个
Christophe Labreuche | Michel Grabisch | Agnès Rico | Alain Chateauneuf | Agnès Rico | A. Chateauneuf | M. Grabisch | C. Labreuche
[1] Jean-Luc Marichal,et al. Aggregation operators for multicriteria decision aid , 1998 .
[2] Toshiaki Murofushi. Lexicographic use of Sugeno integrals and monotonicity conditions , 2001, IEEE Trans. Fuzzy Syst..
[3] Christophe Labreuche,et al. The Choquet integral for the aggregation of interval scales in multicriteria decision making , 2003, Fuzzy Sets Syst..
[4] Didier Dubois,et al. Decision-theoretic foundations of qualitative possibility theory , 2001, Eur. J. Oper. Res..
[5] Didier Dubois,et al. Weighted minimum and maximum operations in fuzzy set theory , 1986, Inf. Sci..
[6] S. Greco,et al. Conjoint measurement and rough set approach for multicriteria sorting problems in presence of ordinal criteria , 2001 .
[7] Jean-Luc Marichal,et al. An axiomatic approach of the discrete Sugeno integral as a tool to aggregate interacting criteria in a qualitative framework , 2001, IEEE Trans. Fuzzy Syst..
[8] Jaap Van Brakel,et al. Foundations of measurement , 1983 .
[9] Michel Grabisch,et al. On Preference Representation on an Ordinal Scale , 2001, ECSQARU.
[10] 菅野 道夫,et al. Theory of fuzzy integrals and its applications , 1975 .
[11] Didier Dubois,et al. The Use of the Discrete Sugeno Integral in Decision-Making: A Survey , 2001, Int. J. Uncertain. Fuzziness Knowl. Based Syst..
[12] Michel Grabisch,et al. Representation of preferences over a finite scale by a mean operator , 2006, Math. Soc. Sci..