Confined Carbon Mediating Dehydroaromatization of Methane over Mo/ZSM‐5

Abstract Non‐oxidative dehydroaromatization of methane (MDA) is a promising catalytic process for direct valorization of natural gas to liquid hydrocarbons. The application of this reaction in practical technology is hindered by a lack of understanding about the mechanism and nature of the active sites in benchmark zeolite‐based Mo/ZSM‐5 catalysts, which precludes the solution of problems such as rapid catalyst deactivation. By applying spectroscopy and microscopy, it is shown that the active centers in Mo/ZSM‐5 are partially reduced single‐atom Mo sites stabilized by the zeolite framework. By combining a pulse reaction technique with isotope labeling of methane, MDA is shown to be governed by a hydrocarbon pool mechanism in which benzene is derived from secondary reactions of confined polyaromatic carbon species with the initial products of methane activation.

[1]  C. Peden,et al.  Direct observation of the active center for methane dehydroaromatization using an ultrahigh field 95Mo NMR spectroscopy. , 2008, Journal of the American Chemical Society.

[2]  Weiguo Song,et al.  Supramolecular origins of product selectivity for methanol-to-olefin catalysis on HSAPO-34. , 2001, Journal of the American Chemical Society.

[3]  Malcolm L. H. Green,et al.  Effect of carburising agent on the structure of molybdenum carbides , 2001 .

[4]  X. Bao,et al.  MAS NMR, ESR and TPD studies of Mo/HZSM‐5 catalysts: evidence for the migration of molybdenum species into the zeolitic channels , 2000 .

[5]  Mélanie Bordeaux,et al.  Katalytische, milde und selektive Oxyfunktionalisierung von linearen Alkanen: aktuelle Herausforderungen , 2012 .

[6]  E. Iglesia,et al.  Genesis of methane activation sites in Mo-exchanged H–ZSM-5 catalysts , 2000 .

[7]  Suk Bong Hong,et al.  Tetramethylbenzenium radical cations as major active intermediates of methanol-to-olefin conversions over phosphorous-modified HZSM-5 zeolites , 2013 .

[8]  J. McGregor,et al.  Things go better with coke: the beneficial role of carbonaceous deposits in heterogeneous catalysis , 2016 .

[9]  J. Caro,et al.  Natural gas to fuels and chemicals: improved methane aromatization in an oxygen-permeable membrane reactor. , 2013, Angewandte Chemie.

[10]  Emiel J. M. Hensen,et al.  Methane Dehydroaromatization by Mo/HZSM-5: Mono- or Bifunctional Catalysis? , 2017 .

[11]  Xinhe Bao,et al.  Direct Conversion of Methane to Value-Added Chemicals over Heterogeneous Catalysts: Challenges and Prospects. , 2017, Chemical reviews.

[12]  J. M. Serra,et al.  Direct conversion of methane to aromatics in a catalytic co-ionic membrane reactor , 2016, Science.

[13]  Jung-Ki Park,et al.  Lanthanum-catalysed synthesis of microporous 3D graphene-like carbons in a zeolite template , 2016, Nature.

[14]  John E. Anthony Höhere Acene: vielseitige organische Halbleiter , 2008 .

[15]  J. Gascón,et al.  Strategies for the direct catalytic valorization of methane using heterogeneous catalysis:challenges and opportunities , 2016 .

[16]  Jie-Sheng Chen,et al.  Unambiguous observation of electron transfer from a zeolite framework to organic molecules. , 2009, Angewandte Chemie.

[17]  X. Bao,et al.  On the Induction Period of Methane Aromatization over Mo-Based Catalysts , 2000 .

[18]  John E Anthony,et al.  The larger acenes: versatile organic semiconductors. , 2008, Angewandte Chemie.

[19]  Stanley W Botchway,et al.  Molybdenum Speciation and its Impact on Catalytic Activity during Methane Dehydroaromatization in Zeolite ZSM‐5 as Revealed by Operando X‐Ray Methods , 2016, Angewandte Chemie.

[20]  E. McFarland Unconventional Chemistry for Unconventional Natural Gas , 2012, Science.

[21]  X. Bao,et al.  Carbonaceous Deposition on Mo/HMCM-22 Catalysts for Methane Aromatization: A TP Technique Investigation , 2002 .

[22]  K. Minachev,et al.  Aromatization of methane on pentasil-containing catalysts , 1989 .

[23]  Zinfer R. Ismagilov,et al.  Direct conversion of methane on Mo/ZSM-5 catalysts to produce benzene and hydrogen: achievements and perspectives , 2008 .

[24]  Unni Olsbye,et al.  Umwandlung von Methanol in Kohlenwasserstoffe: Wie Zeolith‐Hohlräume und Porengröße die Produktselektivität bestimmen , 2012 .

[25]  X. Bao,et al.  Methane Dehydro-aromatization under Nonoxidative Conditions over Mo/HZSM-5 Catalysts: EPR Study of the Mo Species on/in the HZSM-5 Zeolite , 2000 .

[26]  Hongjun Fan,et al.  Direct, Nonoxidative Conversion of Methane to Ethylene, Aromatics, and Hydrogen , 2014, Science.

[27]  D. Su,et al.  Active coke: Carbonaceous materials as catalysts for alkane dehydrogenation , 2010 .

[28]  Israel E. Wachs,et al.  Identification of molybdenum oxide nanostructures on zeolites for natural gas conversion , 2015, Science.

[29]  F. Kapteijn,et al.  Selective Coke Combustion by Oxygen Pulsing During Mo/ZSM‐5‐Catalyzed Methane Dehydroaromatization , 2016, Angewandte Chemie.

[30]  X. Bao,et al.  Methane dehydroaromatization over Mo/HZSM-5 catalysts: The reactivity of MoCx species formed from MoOx associated and non-associated with Brönsted acid sites , 2005 .

[31]  Wifredo Ricart,et al.  The version of record : , 2018 .

[32]  Anne Galarneau,et al.  Catalytic, mild, and selective oxyfunctionalization of linear alkanes: current challenges. , 2012, Angewandte Chemie.

[33]  K. Lillerud,et al.  Conversion of methanol to hydrocarbons: how zeolite cavity and pore size controls product selectivity. , 2012, Angewandte Chemie.

[34]  E. Hensen,et al.  Stable Mo/HZSM-5 methane dehydroaromatization catalysts optimized for high-temperature calcination-regeneration , 2017 .

[35]  A. Feldhoff,et al.  Gas to Liquids: Natural Gas Conversion to Aromatic Fuels and Chemicals in a Hydrogen-Permeable Ceramic Hollow Fiber Membrane Reactor , 2016 .

[36]  W. Cui,et al.  Study on the induction period of methane aromatization over Mo/HZSM-5: partial reduction of Mo species and formation of carbonaceous deposit , 1999 .