Analyse des rôles dans les communautés virtuelles : définitions et premières expérimentations sur IMDb

RESUME. Analyser les roles dans les communautes virtuelles nous permet de mieux comprendre, voire de predire, le comportement individuel des internautes. Bien que de nombreuses approches aient ete proposees, on constate un manque de generalisation des methodes existantes et des resultats obtenus. Dans ce papier, nous passons en revue quelques theories developpees a propos des roles sociaux et nous cherchons une definition compatible a une automatisation par les machines de la detection des roles joues par les individus dans des fils de discussions sur internet. Nous analysons ensuite le site Web IMDb afin d’illustrer notre discours.

[1]  Garry Robins,et al.  An introduction to exponential random graph (p*) models for social networks , 2007, Soc. Networks.

[2]  Aaron Clauset,et al.  Adapting the Stochastic Block Model to Edge-Weighted Networks , 2013, ArXiv.

[3]  Djamel A. Zighed,et al.  Roles in social networks: Methodologies and research issues , 2012, Web Intell. Agent Syst..

[4]  Danyel Fisher,et al.  Visualizing the Signatures of Social Roles in Online Discussion Groups , 2007, J. Soc. Struct..

[5]  Andrew McCallum,et al.  Topic and Role Discovery in Social Networks with Experiments on Enron and Academic Email , 2007, J. Artif. Intell. Res..

[6]  Hans-Peter Kriegel,et al.  Infinite Hidden Relational Models , 2006, UAI.

[7]  S. Wasserman,et al.  Blockmodels: Interpretation and evaluation , 1992 .

[8]  Kathryn B. Laskey,et al.  Stochastic blockmodels: First steps , 1983 .

[9]  Emmanuel Lazega,et al.  Structural stability regardless of membership turnover? The added value of blockmodelling in the analysis of network evolution , 2011 .

[10]  T. Snijders,et al.  Estimation and Prediction for Stochastic Blockstructures , 2001 .

[11]  S. Shen-Orr,et al.  Network motifs: simple building blocks of complex networks. , 2002, Science.

[12]  Thomas L. Griffiths,et al.  Discovering Latent Classes in Relational Data , 2004 .

[13]  Lada A. Adamic,et al.  Knowledge sharing and yahoo answers: everyone knows something , 2008, WWW.

[14]  Abel Rodríguez Modeling the dynamics of social networks using Bayesian hierarchical blockmodels , 2012, Stat. Anal. Data Min..

[15]  Sebastian Wernicke,et al.  FANMOD: a tool for fast network motif detection , 2006, Bioinform..

[16]  Dominique Cardon,et al.  Two Paths of Glory - Structural Positions and Trajectories of Websites within Their Topical Territory , 2011, ICWSM.

[17]  Danai Koutra,et al.  RolX: structural role extraction & mining in large graphs , 2012, KDD.

[18]  S. Nadel The Theory of Social Structure , 1957 .

[19]  S. Boorman,et al.  Social Structure from Multiple Networks. II. Role Structures , 1976, American Journal of Sociology.

[20]  B. Biddle RECENT DEVELOPMENTS IN ROLE THEORY , 1986 .

[21]  S. Wasserman,et al.  Stochastic a posteriori blockmodels: Construction and assessment , 1987 .

[22]  S. Boorman,et al.  Social Structure from Multiple Networks. I. Blockmodels of Roles and Positions , 1976, American Journal of Sociology.

[23]  Padhraic Smyth,et al.  Stochastic blockmodeling of relational event dynamics , 2013, AISTATS.

[24]  Edoardo M. Airoldi,et al.  Mixed Membership Stochastic Blockmodels , 2007, NIPS.

[25]  E. Goffman The Presentation of Self in Everyday Life , 1959 .

[26]  Elizabeth M. Daly,et al.  Decomposing Discussion Forums using Common User Roles , 2010 .

[27]  H. White,et al.  “Structural Equivalence of Individuals in Social Networks” , 2022, The SAGE Encyclopedia of Research Design.

[28]  Le Song,et al.  Dynamic mixed membership blockmodel for evolving networks , 2009, ICML '09.