Fabrication of ZnO/Cu2O heterojunctions in atmospheric conditions: improved interface quality and solar cell performance

[1]  M. Ichimura,et al.  Fabrication of TiO2/Cu2O heterojunction solar cells by electrophoretic deposition and electrodeposition , 2013 .

[2]  N. Economou,et al.  Heterojunction solar cells on cuprous oxide , 1981 .

[3]  H. Hesse,et al.  Strong Efficiency Improvements in Ultra‐low‐Cost Inorganic Nanowire Solar Cells , 2010, Advanced materials.

[4]  Yuki Nishi,et al.  High-Efficiency Oxide Solar Cells with ZnO/Cu2O Heterojunction Fabricated on Thermally Oxidized Cu2O Sheets , 2011 .

[5]  Yuki Nishi,et al.  High-Efficiency Cu2O-Based Heterojunction Solar Cells Fabricated Using a Ga2O3 Thin Film as N-Type Layer , 2013 .

[6]  Tonio Buonassisi,et al.  Improved Cu2O‐Based Solar Cells Using Atomic Layer Deposition to Control the Cu Oxidation State at the p‐n Junction , 2014 .

[7]  K. Musselman,et al.  Research Update: Doping ZnO and TiO2 for solar cells , 2013 .

[8]  Jian V. Li,et al.  Atomic Layer Deposited Gallium Oxide Buffer Layer Enables 1.2 V Open‐Circuit Voltage in Cuprous Oxide Solar Cells , 2014, Advanced materials.

[9]  David O. Scanlon,et al.  Undoped n-Type Cu2O: Fact or Fiction? , 2010 .

[10]  Hideki Tanaka,et al.  High-Efficiency Oxide Heterojunction Solar Cells Using Cu2O Sheets , 2004 .

[11]  Minoru Inaba,et al.  Electrochemically constructed p-Cu2O/n-ZnO heterojunction diode for photovoltaic device , 2007 .

[12]  H. Sirringhaus,et al.  Two-Dimensional Carrier Distribution in Top-Gate Polymer Field-Effect Transistors: Correlation between Width of Density of Localized States and Urbach Energy , 2013, Advanced materials.

[13]  Hideki Tanaka,et al.  Effect of a buffer layer on the photovoltaic properties of AZO/Cu2O solar cells , 2006, SPIE Micro + Nano Materials, Devices, and Applications.

[14]  Toshihiro Miyata,et al.  Effect of ZnO film deposition methods on the photovoltaic properties of ZnO–Cu2O heterojunction devices , 2006 .

[15]  Bruno Ehrler,et al.  Improved Open- Circuit Voltage in ZnO–PbSe Quantum Dot Solar Cells by Understanding and Reducing Losses Arising from the ZnO Conduction Band Tail , 2014, Advanced energy materials.

[16]  T. Miyata,et al.  Photovoltaic Properties in Al-doped ZnO/non-doped Zn1-XMgXO/Cu2O Heterojunction Solar Cells , 2013 .

[17]  S. Passerini,et al.  Electrodeposited ZnO/Cu2O heterojunction solar cells , 2008 .

[18]  A. Pasquier,et al.  Effects of Mg composition on open circuit voltage of Cu2O-MgxZn1 xO heterojunction solar cells , 2012 .

[19]  T. Oku,et al.  Fabrication and Characterization of ZnO/Cu2O Solar Cells Prepared by Electrodeposition , 2013 .

[20]  Yuki Nishi,et al.  Efficiency improvement of Cu2O-based heterojunction solar cells fabricated using thermally oxidized copper sheets , 2014 .

[21]  Yuki Nishi,et al.  The impact of heterojunction formation temperature on obtainable conversion efficiency in n-ZnO/p-Cu2O solar cells , 2013 .

[22]  R. Carius,et al.  Copper oxide nanoparticles for thin film photovoltaics , 2013 .

[23]  Francesca Sarto,et al.  Heterojunction solar cell with 2% efficiency based on a Cu2O substrate , 2006 .

[24]  Jonathan P. Mailoa,et al.  Ultrathin amorphous zinc-tin-oxide buffer layer for enhancing heterojunction interface quality in metal-oxide solar cells , 2013 .

[25]  K. Musselman,et al.  Novel Atmospheric Growth Technique to Improve Both Light Absorption and Charge Collection in ZnO/Cu2O Thin Film Solar Cells , 2013 .

[26]  Arie Zaban,et al.  All-Oxide Photovoltaics. , 2012, The journal of physical chemistry letters.

[27]  Judith L. MacManus-Driscoll,et al.  Spatial atmospheric atomic layer deposition: a new laboratory and industrial tool for low-cost photovoltaics , 2014 .