Strain-induced reactivation of corrosion pits in austenitic stainless steel

[1]  Marco Stampanoni,et al.  Synchrotron X-ray radiography studies of pitting corrosion of stainless steel: extraction of pit propagation parameters , 2015 .

[2]  Xianghui Xiao,et al.  In situ experimental techniques to study the mechanical behavior of materials using X-ray synchrotron tomography , 2014, Integrating Materials and Manufacturing Innovation.

[3]  I. Muto,et al.  Effect of Applied Stress On Dissolution Morphology and Pit Initiation Behavior of Mns Inclusion in Stainless Steel , 2014 .

[4]  G. Frankel,et al.  Pitting Corrosion of Very Clean Type 304 Stainless Steel , 2014 .

[5]  A. Volinsky,et al.  Stainless steel pitting and early-stage stress corrosion cracking under ultra-low elastic load , 2013 .

[6]  E. Han,et al.  Simulation of metastable corrosion pit development under mechanical stress , 2013 .

[7]  Alan Turnbull,et al.  Novel images of the evolution of stress corrosion cracks from corrosion pits , 2011 .

[8]  F. Marone,et al.  In situ synchrotron X-ray micro-tomography study of pitting corrosion in stainless steel , 2011 .

[9]  F. De Carlo,et al.  In situ X-ray tomography of intergranular corrosion of 2024 and 7050 aluminium alloys , 2010 .

[10]  F. Carlo,et al.  In-situ monitoring of corrosion processes within the bulk of AlMgSi alloys using X-ray microtomography , 2008 .

[11]  Christopher M. Martin,et al.  Characterisation of salt films on dissolving metal surfaces in artificial corrosion pits via in situ synchrotron X-ray diffraction , 2008 .

[12]  Zonghu He,et al.  Effect of Strain and Chloride Concentration on Pitting Susceptibility for Type 304 Austenitic Stainless Steel , 2008 .

[13]  Robert E. Melchers,et al.  Modeling of Long-Term Corrosion Loss and Pitting for Chromium-Bearing and Stainless Steels in Seawater , 2008 .

[14]  Philip J. Withers,et al.  X-ray microtomographic observation of intergranular stress corrosion cracking in sensitised austenitic stainless steel , 2006 .

[15]  J. González-Sánchez,et al.  Analysis of the stress intensity factor around corrosion pits developed on structures subjected to mixed loading , 2006 .

[16]  L. Orkney,et al.  Technical Note: Visualization of Stress Corrosion Cracks Emerging from Pits , 2006 .

[17]  R. Newman,et al.  Evolution of current transients and morphology of metastable and stable pitting on stainless steel near the critical pitting temperature , 2006 .

[18]  A. Turnbull,et al.  Modelling of the evolution of stress corrosion cracks from corrosion pits , 2006 .

[19]  Philip J. Withers,et al.  Three dimensional observations and modelling of intergranular stress corrosion cracking in austenitic stainless steel , 2005 .

[20]  R. Newman,et al.  Using pit solution chemistry for evaluation of metastable pitting stability of austenitic stainless steel , 2005 .

[21]  D. Landolt,et al.  Passive films on stainless steels—chemistry, structure and growth , 2003 .

[22]  P. Ernst,et al.  Pit growth studies in stainless steel foils. I. Introduction and pit growth kinetics , 2002 .

[23]  P. Schmuki From Bacon to barriers: a review on the passivity of metals and alloys , 2002 .

[24]  R. Alkire,et al.  Pit Initiation on Stainless Steels in 1 M NaCl With and Without Mechanical Stress , 2001 .

[25]  A. Devasenapathi,et al.  Effect of applied potential on the nature of surface film and SCC of a high Mn stainless steel in 1 M HCl , 1999 .

[26]  Zhou,et al.  Influence of pitting on the fatigue life of a turbine blade steel , 1999 .

[27]  G. Frankel Pitting Corrosion of Metals A Review of the Critical Factors , 1998 .

[28]  R. Newman,et al.  Perforated Covers for Propagating Pits , 1998 .

[29]  R. Newman,et al.  Localised dissolution kinetics, salt films and pitting potentials , 1997 .

[30]  R. Newman,et al.  The mechanism of lacy cover formation in pitting , 1997 .

[31]  D. Eliezer,et al.  The mechanochemical behavior of type 316L stainless steel , 1996 .

[32]  Petrus Christiaan Pistorius,et al.  Metastable pitting corrosion of stainless steel and the transition to stability , 1992, Philosophical Transactions of the Royal Society of London. Series A: Physical and Engineering Sciences.

[33]  G. Frankel,et al.  Metastable Pitting of Stainless Steel , 1987 .

[34]  T. A. Hatton,et al.  Mass transfer and electrochemical kinetic interactions in localized pitting corrosion , 1986 .

[35]  R. Newman,et al.  Growth and Repassivation of Single Corrosion Pits in Stainless Steel , 1984 .

[36]  L. Feldkamp,et al.  Practical cone-beam algorithm , 1984 .

[37]  J. Galvele,et al.  Transport Processes and the Mechanism of Pitting of Metals , 1976 .

[38]  D. Landolt,et al.  Rotating disc electrode study of anodic dissolution or iron in concentrated chloride media , 1975 .

[39]  P. Withers,et al.  Application of a Quasi in-situ Experimental Approach to Estimate 3-D Pitting Corrosion Kinetics in Stainless Steel , 2016 .

[40]  J. Soltis Passivity breakdown, pit initiation and propagation of pits in metallic materials – Review , 2015 .

[41]  I. Muto,et al.  Effects of Corrosion and Cracking of Sulfide Inclusions on Pit Initiation in Stainless Steel , 2014 .

[42]  P. Withers,et al.  High-resolution, in-situ, tomographic Observation of Stress Corrosion Cracking , 2007 .

[43]  Y. Kondo Prediction of Fatigue Crack Initiation Life Based on Pit Growth , 1989 .

[44]  Kai P. Wong,et al.  The corrosion of single pits on stainless steel in acidic chloride solution , 1988 .