Détermination automatique des volumes fonctionnels en imagerie d'émission pour les applications en oncologie. (Automatic delineation of functional volumes in emission tomography for oncology applications)

Une des principales causes d'erreur en analyse semi-quantitative en imagerie par emission de positons (TEP) est la methode utilisee pour determiner les volumes d'interet sur les images fonctionnelles. Ceci concerne le diagnostic et le suivi therapeutique en oncologie ainsi que la nouvelle application en plein developpement qu'est la radiotherapie guidee par l'image. La faible qualite des images d'emission, liee notamment au bruit et au flou induits par les effets de volume partiels et la variabilite des protocoles d'acquisition et de reconstruction des images, ainsi que le grand nombre de procedures proposees pour definir les volumes, en sont la cause. La plupart des methodes proposees jusqu'alors sont basees sur des seuillages deterministes, peu robustes au bruit et aux variations de contraste et incapables de gerer les heterogeneites dans la distribution d'activite des tumeurs. L'objectif de cette these est de proposer une approche de segmentation des images 3D, automatique, robuste, precise et reproductible pour determiner le volume fonctionnel des tumeurs de toutes tailles dont la distribution d'activite peut etre tres heterogene. L'approche proposee est fondee sur la segmentation statistique des images, couplee a une modelisation floue, permettant de prendre en compte a la fois l'aspect bruite et l'aspect flou des images de medecine nucleaire. Elle fait appel a une etape d'estimation iterative des parametres et une modelisation locale du voxel et de son voisinage pour l'estimation et la segmentation. Les methodes developpees ont ete evaluees sur de nombreuses donnees simulees et reelles, tant pour des images de fantomes que pour des images de tumeurs. Les resultats sur fantome ont permis de valider les performances de l'approche proposee en terme de taille d'objet d'interet, jusqu'a 13 mm de diametre (environ deux fois la resolution spatiale en TEP), ainsi que de confirmer un comportement plus robuste par rapport au bruit, aux variations de contraste ou des parametres d'acquisition et de reconstruction, que les methodes de reference basees sur des seuillages. Les resultats obtenus sur differents ensemble de donnees d'images cliniques de tumeurs, fournies par differents services de medecine nucleaire dans le cadre de multiples collaborations, ont montre la capacite de l'approche a segmenter avec precision des tumeurs complexes, tant en terme de forme que de distribution d'activite, pour lesquelles les methodes de reference echouent a produire des segmentation coherentes. La methode de segmentation developpee est egalement capable de definir des regions d'interet au sein meme de la tumeur grâce a sa gestion de l'heterogeneite de l'activite de la tumeur, la ou les methodes de references sont strictement binaires. Les resultats concernant la robustesse et la precision de l'approche sur tumeurs amenent a penser que son utilisation peut etre envisagee tant dans le cadre du diagnostic et du suivi therapeutique, que pour la definition des volumes cibles en radiotherapie, avec le potentiel d'augmenter les doses delivrees aux tumeurs tout en reduisant dans le meme temps les doses delivrees aux tissus sains et aux organes a risque environnants, conformement au principe de "dose painting". Des travaux pour evaluer l'impact effectif de la methodologie dans le contexte de la radiotherapie ont commence dans le cadre d'un projet ANR, avec un depot de brevet associe.

[1]  Christian Roux,et al.  A Fuzzy Locally Adaptive Bayesian Segmentation Approach for Volume Determination in PET , 2009, IEEE Transactions on Medical Imaging.

[2]  K. Otto,et al.  Volumetric modulated arc therapy for delivery of prostate radiotherapy: comparison with intensity-modulated radiotherapy and three-dimensional conformal radiotherapy. , 2008, International journal of radiation oncology, biology, physics.

[3]  Pascal Bailly,et al.  A practical, semi-experimental system matrix for 2-D PET image reconstruction: Comparison with a geometrical model , 2008, 2008 IEEE Nuclear Science Symposium Conference Record.

[4]  A. Le Pogam,et al.  A 3D multi resolution local analysis approach for correction of partial volume effects in emission tomography , 2008, 2008 IEEE Nuclear Science Symposium Conference Record.

[5]  A. Bezjak,et al.  A Pilot Prospective Study of Metabolic and Anatomic Response using FDG PET CT before, during and after Radiotherapy in Lung Cancer , 2008 .

[6]  K. Carson,et al.  Does PET-CT in the radiotherapy treatment planning process for non-small cell lung cancer alter treatment volumes in already PET-CT staged patients? , 2008 .

[7]  R. Wahl,et al.  Pancreatic Tumor Delineation with FDG-PET/CT: Smaller Volumes and Regions not Identified with CT Alone , 2008 .

[8]  H. Minn,et al.  Biologic Target Volume Definition with [11C] acetate PET/CT in IMRT of Patients with Prostate Cancer , 2008 .

[9]  H. Ashamalla,et al.  Contribution of PET/CT in Radiation Therapy Treatment Planning for Rectal Cancer in the Neoadjuvant Setting , 2008 .

[10]  I. Poon,et al.  Variability in Identification of Positive Nodes for Head and Neck Cancers: Comparison of CT Alone with PET-CT , 2008 .

[11]  Daniel A Low,et al.  A novel PET tumor delineation method based on adaptive region-growing and dual-front active contours. , 2008, Medical physics.

[12]  P. Lambin,et al.  Individualized radical radiotherapy of non-small-cell lung cancer based on normal tissue dose constraints: a feasibility study. , 2008, International journal of radiation oncology, biology, physics.

[13]  Philippe Lambin,et al.  Stability of 18F-deoxyglucose uptake locations within tumor during radiotherapy for NSCLC: a prospective study. , 2008, International journal of radiation oncology, biology, physics.

[14]  I. Barillot,et al.  Comparaison de six méthodes de segmentation du volume tumoral sur la 18F-FDG TEP-TDM avec le volume de référence anatomopathologique dans les cancers bronchopulmonaires non à petites cellules , 2008 .

[15]  Dimitris Visvikis,et al.  Contrast enhancement in emission tomography by way of synergistic PET/CT image combination , 2008, Comput. Methods Programs Biomed..

[16]  P. Evans Anatomical imaging for radiotherapy , 2008, Physics in medicine and biology.

[17]  A. Paulino PET-CT in Radiotherapy Treatment Planning , 2008 .

[18]  Federico E. Turkheimer,et al.  Conditional partial volume correction for emission tomography: A wavelet-based hidden Markov model and multi-resolution approach , 2008, 2008 5th IEEE International Symposium on Biomedical Imaging: From Nano to Macro.

[19]  Dimitris Visvikis,et al.  Partial volume correction in PET based on functional volumes , 2008 .

[20]  T. Shiga,et al.  Performance of a prototype brain PET scanner based on semiconductor detectors , 2008 .

[21]  Andre Dekker,et al.  The integration of PET-CT scans from different hospitals into radiotherapy treatment planning. , 2008, Radiotherapy and oncology : journal of the European Society for Therapeutic Radiology and Oncology.

[22]  Suleman Surti,et al.  Benefit of Time-of-Flight in PET: Experimental and Clinical Results , 2008, Journal of Nuclear Medicine.

[23]  Christophe Collet,et al.  Non-stationary fuzzy Markov chain , 2007, Pattern Recognit. Lett..

[24]  D. Visvikis,et al.  Fully automated partial volume correction in PET based on a wavelet approach without the use of anatomical information , 2007, 2007 IEEE Nuclear Science Symposium Conference Record.

[25]  D. Mankoff,et al.  Reproducibility of quantifying tracer uptake with PET/CT for evaluation of response to therapy , 2007, 2007 IEEE Nuclear Science Symposium Conference Record.

[26]  A J Reader,et al.  List-mode-based reconstruction for respiratory motion correction in PET using non-rigid body transformations , 2007, Physics in medicine and biology.

[27]  F. Giammarile TEP et optimisation de la radiothérapie : comment ? Quels traceurs ? Pour quoi faire ? , 2007 .

[28]  Philippe Lambin,et al.  PET-CT-based auto-contouring in non-small-cell lung cancer correlates with pathology and reduces interobserver variability in the delineation of the primary tumor and involved nodal volumes. , 2007, International journal of radiation oncology, biology, physics.

[29]  Turzó,et al.  Fuzzy hidden Markov chains segmentation for volume determination and quantitation in PET , 2007, Physics in medicine and biology.

[30]  I. Buvat,et al.  Partial-Volume Effect in PET Tumor Imaging* , 2007, Journal of Nuclear Medicine.

[31]  Nico Karssemeijer,et al.  A novel iterative method for lesion delineation and volumetric quantification with FDG PET , 2007, Nuclear medicine communications.

[32]  Dimitris Visvikis,et al.  Local respiratory motion correction (LRMC) for PET/CT imaging , 2007 .

[33]  George Kontaxakis,et al.  Performance of an image reconstruction algorithm incorporating continuous B-spline functions in the system matrix for respiratory motion correction in 4D PET/CT , 2007 .

[34]  Michel Defrise,et al.  Reconstruction d’image en tomographie par émission , 2007 .

[35]  Habib Zaidi,et al.  Partial Volume Correction Strategies in PET. , 2007, PET clinics.

[36]  Anne Bol,et al.  A gradient-based method for segmenting FDG-PET images: methodology and validation , 2007, European Journal of Nuclear Medicine and Molecular Imaging.

[37]  V. Grégoire,et al.  Determination of tumour hypoxia with the PET tracer [18F]EF3: improvement of the tumour-to-background ratio in a mouse tumour model , 2007, European Journal of Nuclear Medicine and Molecular Imaging.

[38]  J. Karp,et al.  Performance of Philips Gemini TF PET/CT scanner with special consideration for its time-of-flight imaging capabilities. , 2007, Journal of nuclear medicine : official publication, Society of Nuclear Medicine.

[39]  Abbes Amira,et al.  Fully automated segmentation of oncological PET volumes using a combined multiscale and statistical model. , 2007, Medical physics.

[40]  Sasa Mutic,et al.  18F-FDG PET definition of gross tumor volume for radiotherapy of non-small cell lung cancer: is a single standardized uptake value threshold approach appropriate? , 2006, Journal of nuclear medicine : official publication, Society of Nuclear Medicine.

[41]  R. Hustinx,et al.  Sequential Positron Emission Tomography Using [18F]Fluorodeoxyglucose for Monitoring Response to Chemotherapy in Metastatic Breast Cancer , 2006, Clinical Cancer Research.

[42]  Christophe Collet,et al.  Fuzzy Markov Random Fields versus Chains for Multispectral Image Segmentation , 2006, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[43]  G. Bonniaud,et al.  /sup 18/F-FDG PET images segmentation using morphological watershed: a phantom study , 2006, 2006 IEEE Nuclear Science Symposium Conference Record.

[44]  Matthew Turk,et al.  Automatic Hot Spot Detection and Segmentation in Whole Body FDG-PET Images , 2006, 2006 International Conference on Image Processing.

[45]  Jinyi Qi,et al.  Iterative reconstruction techniques in emission computed tomography , 2006, Physics in medicine and biology.

[46]  T. Bortfeld IMRT: a review and preview , 2006, Physics in medicine and biology.

[47]  Gábor Székely,et al.  Assessment of 18F PET signals for automatic target volume definition in radiotherapy treatment planning. , 2006, Radiotherapy and oncology : journal of the European Society for Therapeutic Radiology and Oncology.

[48]  D Visvikis,et al.  A multiresolution image based approach for correction of partial volume effects in emission tomography , 2006, Physics in medicine and biology.

[49]  C. L. Le Rest,et al.  Validation of a Monte Carlo simulation of the Philips Allegro/GEMINI PET systems using GATE , 2006, Physics in medicine and biology.

[50]  B. Murray,et al.  Thresholding in PET images of static and moving targets , 2005, Physics in medicine and biology.

[51]  S. Rafla,et al.  The contribution of integrated PET/CT to the evolving definition of treatment volumes in radiation treatment planning in lung cancer. , 2005, International journal of radiation oncology, biology, physics.

[52]  R. Hustinx,et al.  La 3'-deoxy-3'-[18F] fluorothymidine ([18F]-FLT) est-elle le prochain traceur utilise en routine pour la TEP apres le [18F]-FDG? , 2005 .

[53]  C. Rübe,et al.  Comparison of different methods for delineation of 18F-FDG PET-positive tissue for target volume definition in radiotherapy of patients with non-Small cell lung cancer. , 2005, Journal of nuclear medicine : official publication, Society of Nuclear Medicine.

[54]  David Brasse,et al.  Correction methods for random coincidences in fully 3D whole-body PET: impact on data and image quality. , 2005, Journal of nuclear medicine : official publication, Society of Nuclear Medicine.

[55]  Sadek Nehmeh,et al.  Does registration of PET and planning CT images decrease interobserver and intraobserver variation in delineating tumor volumes for non-small-cell lung cancer? , 2005, International journal of radiation oncology, biology, physics.

[56]  E Yorke,et al.  Four-dimensional (4D) PET/CT imaging of the thorax. , 2004, Medical physics.

[57]  Vincent Gregoire,et al.  Is there any future in radiotherapy planning without the use of PET: unraveling the myth... , 2004, Radiotherapy and oncology : journal of the European Society for Therapeutic Radiology and Oncology.

[58]  D Visvikis,et al.  PET technology: current trends and future developments. , 2004, The British journal of radiology.

[59]  D. Visvikis,et al.  Evaluation of respiratory motion effects in comparison with other parameters affecting PET image quality , 2004, IEEE Symposium Conference Record Nuclear Science 2004..

[60]  J. Thie Understanding the standardized uptake value, its methods, and implications for usage. , 2004, Journal of nuclear medicine : official publication, Society of Nuclear Medicine.

[61]  R. Boellaard,et al.  Effects of noise, image resolution, and ROI definition on the accuracy of standard uptake values: a simulation study. , 2004, Journal of nuclear medicine : official publication, Society of Nuclear Medicine.

[62]  André Luxen,et al.  Fluorinated tracers for imaging cancer with positron emission tomography , 2004, European Journal of Nuclear Medicine and Molecular Imaging.

[63]  R. Hustinx,et al.  Within-patient variability of (18)F-FDG: standardized uptake values in normal tissues. , 2004, Journal of nuclear medicine : official publication, Society of Nuclear Medicine.

[64]  Alan C. Evans,et al.  PET-SORTEO: a Monte Carlo-based Simulator with high count rate capabilities , 2004, IEEE Transactions on Nuclear Science.

[65]  Anne Bol,et al.  Tri-dimensional automatic segmentation of PET volumes based on measured source-to-background ratios: influence of reconstruction algorithms. , 2003, Radiotherapy and oncology : journal of the European Society for Therapeutic Radiology and Oncology.

[66]  A. Reilhac,et al.  Brain surface extraction from PET images with deformable model: assessment using Monte Carlo simulator , 2003, 2003 IEEE Nuclear Science Symposium. Conference Record (IEEE Cat. No.03CH37515).

[67]  Tianzi Jiang,et al.  Automation segmentation of PET image for brain tumors , 2003, 2003 IEEE Nuclear Science Symposium. Conference Record (IEEE Cat. No.03CH37515).

[68]  Jinyi Qi,et al.  A unified noise analysis for iterative image estimation. , 2003, Physics in medicine and biology.

[69]  Thomas Beyer,et al.  PET/CT scanners: a hardware approach to image fusion. , 2003, Seminars in nuclear medicine.

[70]  Florence Tupin,et al.  Unsupervised classification of radar images using hidden Markov chains and hidden Markov random fields , 2003, IEEE Trans. Geosci. Remote. Sens..

[71]  Wojciech Pieczynski,et al.  Pairwise Markov Chains , 2003, IEEE Trans. Pattern Anal. Mach. Intell..

[72]  J. Ioannidis,et al.  18F-FDG PET for the diagnosis and grading of soft-tissue sarcoma: a meta-analysis. , 2003, Journal of nuclear medicine : official publication, Society of Nuclear Medicine.

[73]  A. Luxen,et al.  Whole-body tumor imaging using PET and 2-18F-fluoro-L-tyrosine: preliminary evaluation and comparison with 18F-FDG. , 2003, Journal of nuclear medicine : official publication, Society of Nuclear Medicine.

[74]  Yoshiharu Yonekura,et al.  18F-FDG accumulation with PET for differentiation between benign and malignant lesions in the thorax. , 2003, Journal of nuclear medicine : official publication, Society of Nuclear Medicine.

[75]  Pierre Lanchantin,et al.  Statistical image segmentation using triplet Markov fields , 2003, SPIE Remote Sensing.

[76]  Louis B Harrison,et al.  Impact of tumor hypoxia and anemia on radiation therapy outcomes. , 2002, The oncologist.

[77]  Jeffrey A. Fessler,et al.  3D PET reconstruction with FORE and WLS-OS-EM , 2002, 2002 IEEE Nuclear Science Symposium Conference Record.

[78]  Di Yan,et al.  Defining a radiotherapy target with positron emission tomography. , 2002, International journal of radiation oncology, biology, physics.

[79]  R. Hustinx,et al.  The value of positron emission tomography (PET) imaging in disease staging and therapy assessment. , 2002, Annals of oncology : official journal of the European Society for Medical Oncology.

[80]  Konstantin Avrachenkov,et al.  Fuzzy Markov Chains and Decision-Making , 2002, Fuzzy Optim. Decis. Mak..

[81]  H. Zaidi,et al.  Fuzzy clustering-based segmented attenuation correction in whole-body PET imaging. , 2002, Physics in medicine and biology.

[82]  Andrew J. Reader,et al.  Regularized one-pass list-mode EM algorithm for high resolution 3D PET image reconstruction into large arrays , 2001, 2001 IEEE Nuclear Science Symposium Conference Record (Cat. No.01CH37310).

[83]  S. Hain,et al.  FDG-PET as a "metabolic biopsy" tool in non-lung lesions with indeterminate biopsy , 2001, European Journal of Nuclear Medicine and Molecular Imaging.

[84]  Andrés Santos,et al.  Statistical segmentation of multidimensional brain datasets , 2001, SPIE Medical Imaging.

[85]  Steve R. Gunn,et al.  Markov Random Field Models for Segmentation of PET Images , 2001, IPMI.

[86]  D. Hussey American Society for Therapeutic Radiology and Oncology , 2001 .

[87]  Sung-Cheng Huang,et al.  Anatomy of SUV , 2000 .

[88]  M. O'Doherty,et al.  [(18)F]Fluorodeoxyglucose positron emission tomography and its prognostic value in lung cancer. , 2000, European journal of cardio-thoracic surgery : official journal of the European Association for Cardio-thoracic Surgery.

[89]  Abass Alavi,et al.  Impact of attenuation correction on the accuracy of FDG-PET in patients with abdominal tumors: a free-response ROC analysis , 2000, European Journal of Nuclear Medicine.

[90]  C C Ling,et al.  Towards multidimensional radiotherapy (MD-CRT): biological imaging and biological conformality. , 2000, International journal of radiation oncology, biology, physics.

[91]  K. Herholz,et al.  Measurement of clinical and subclinical tumour response using [18F]-fluorodeoxyglucose and positron emission tomography: review and 1999 EORTC recommendations. European Organization for Research and Treatment of Cancer (EORTC) PET Study Group. , 1999, European journal of cancer.

[92]  D. Lalush,et al.  Modeling respiratory mechanics in the MCAT and spline-based MCAT phantoms , 1999, 1999 IEEE Nuclear Science Symposium. Conference Record. 1999 Nuclear Science Symposium and Medical Imaging Conference (Cat. No.99CH37019).

[93]  P. Dupont,et al.  Prognostic importance of the standardized uptake value on (18)F-fluoro-2-deoxy-glucose-positron emission tomography scan in non-small-cell lung cancer: An analysis of 125 cases. Leuven Lung Cancer Group. , 1999, Journal of clinical oncology : official journal of the American Society of Clinical Oncology.

[94]  A. Alavi,et al.  Dual time point fluorine-18 fluorodeoxyglucose positron emission tomography: a potential method to differentiate malignancy from inflammation and normal tissue in the head and neck , 1999, European Journal of Nuclear Medicine.

[95]  M. O'Doherty,et al.  Evaluation of fluorine-18-fluorodeoxyglucose whole body positron emission tomography imaging in the staging of lung cancer. , 1999, The Annals of thoracic surgery.

[96]  Richard E. Carson,et al.  The watershed algorithm: a method to segment noisy PET transmission images , 1998, 1998 IEEE Nuclear Science Symposium Conference Record. 1998 IEEE Nuclear Science Symposium and Medical Imaging Conference (Cat. No.98CH36255).

[97]  Otto Muzik,et al.  Imaging proliferation in vivo with [F-18]FLT and positron emission tomography , 1998, Nature Medicine.

[98]  M Schwaiger,et al.  Positron emission tomography in non-Hodgkin's lymphoma: assessment of chemotherapy with fluorodeoxyglucose. , 1998, Blood.

[99]  S M Larson,et al.  Segmentation of lung lesion volume by adaptive positron emission tomography image thresholding , 1997, Cancer.

[100]  Abdelwaheb Marzouki,et al.  Estimation of generalized mixtures and its application in image segmentation , 1997, IEEE Trans. Image Process..

[101]  Wojciech Pieczynski,et al.  Parameter Estimation in Hidden Fuzzy Markov Random Fields and Image Segmentation , 1997, CVGIP Graph. Model. Image Process..

[102]  Alain Hillion,et al.  Estimation of fuzzy Gaussian mixture and unsupervised statistical image segmentation , 1997, IEEE Trans. Image Process..

[103]  Alvaro R. De Pierro,et al.  A row-action alternative to the EM algorithm for maximizing likelihood in emission tomography , 1996, IEEE Trans. Medical Imaging.

[104]  T K Lewellen,et al.  Quantifying regional hypoxia in human tumors with positron emission tomography of [18F]fluoromisonidazole: a pretherapy study of 37 patients. , 1996, International journal of radiation oncology, biology, physics.

[105]  J. Keyes SUV: standard uptake or silly useless value? , 1995, Journal of nuclear medicine : official publication, Society of Nuclear Medicine.

[106]  Wojciech Pieczynski,et al.  Adaptive Mixture Estimation and Unsupervised Local Bayesian Image Segmentation , 1995, CVGIP Graph. Model. Image Process..

[107]  J. Dai,et al.  Hybrid approach to speech recognition using hidden Markov models and Markov chains , 1994 .

[108]  L M Hamberg,et al.  The dose uptake ratio as an index of glucose metabolism: useful parameter or oversimplification? , 1994, Journal of nuclear medicine : official publication, Society of Nuclear Medicine.

[109]  Alain Hillion,et al.  Fuzzy random fields and unsupervised image segmentation , 1993, IEEE Trans. Geosci. Remote. Sens..

[110]  R. Jaszczak,et al.  Parameter estimation of finite mixtures using the EM algorithm and information criteria with application to medical image processing , 1992 .

[111]  Wladyslaw Skarbek,et al.  Generalized Hilbert scan in image printing , 1992, Theoretical Foundations of Computer Vision.

[112]  J. Itami,et al.  Positron emission tomography using fluorine-18-fluorodeoxyglucose in malignant lymphoma: a comparison with proliferative activity. , 1992, Journal of nuclear medicine : official publication, Society of Nuclear Medicine.

[113]  Tomaso Poggio,et al.  Probabilistic Solution of Ill-Posed Problems in Computational Vision , 1987 .

[114]  Pierre A. Devijver,et al.  Baum's forward-backward algorithm revisited , 1985, Pattern Recognit. Lett..

[115]  L. Shepp,et al.  Maximum Likelihood Reconstruction for Emission Tomography , 1983, IEEE Transactions on Medical Imaging.

[116]  James C. Bezdek,et al.  Pattern Recognition with Fuzzy Objective Function Algorithms , 1981, Advanced Applications in Pattern Recognition.

[117]  D. Rubin,et al.  Maximum likelihood from incomplete data via the EM - algorithm plus discussions on the paper , 1977 .

[118]  H. Akaike A new look at the statistical model identification , 1974 .

[119]  Gordon L. Brownell,et al.  NEW DEVELOPMENTS IN POSITRON SCINTIGRAPHY AND THE APPLICATION OF CYCLOTRON- PRODUCED POSITRON EMITTERS. , 1969 .

[120]  O. Warburg On the origin of cancer cells. , 1956, Science.

[121]  W. Sweet,et al.  The uses of nuclear disintegration in the diagnosis and treatment of brain tumor. , 1951, The New England journal of medicine.

[122]  A. H. Compton A Quantum Theory of the Scattering of X-rays by Light Elements , 1923 .

[123]  P. Gader,et al.  Generalized Hidden Markov Models — Part I : Theoretical Frameworks , 2008 .

[124]  Sasa Mutic,et al.  Concurrent multimodality image segmentation by active contours for radiotherapy treatment planning. , 2007, Medical physics.

[125]  Andreas Bockisch,et al.  Segmentation of PET volumes by iterative image thresholding. , 2007, Journal of nuclear medicine : official publication, Society of Nuclear Medicine.

[126]  R. Hustinx,et al.  [Positron emission tomography in oncology: an update]. , 2007, La Revue du praticien.

[127]  B. Pascal,et al.  Detection d'hyper signaux en Tomographie par Emission de Positons 3D : Approche statistique basee sur la combinaison d'une transformee en ondelettes discrete avec un test de Hotelling , 2007 .

[128]  C. C. Rest,et al.  Le mouvement respiratoire en Imagerie Fonctionnelle du Cancer : une revue des effets et des méthodes de correction Respiratory motion on Functional Imaging in Oncology: a review of the effects and correction methodologies , 2006 .

[129]  D. Visvikis,et al.  The role of PET/CT scanning in radiotherapy planning. , 2006, The British journal of radiology.

[130]  Bertrand Zavidovique,et al.  A modified FCM with optimal Peano scans for image segmentation , 2005, IEEE International Conference on Image Processing 2005.

[131]  Adriaan A. Lammertsma,et al.  Effects of ROI definition and reconstruction method on quantitative outcome and applicability in a response monitoring trial , 2005, European Journal of Nuclear Medicine and Molecular Imaging.

[132]  Y. Yonekura,et al.  Basic characterization of 64Cu-ATSM as a radiotherapy agent. , 2005, Nuclear medicine and biology.

[133]  D. Huglo Détermination des volumes fonctionnels des tumeurs en tomographie d'émission de positons , 2005 .

[134]  Jeffrey D Bradley,et al.  Implementing biologic target volumes in radiation treatment planning for non-small cell lung cancer. , 2004, Journal of nuclear medicine : official publication, Society of Nuclear Medicine.

[135]  Stéphane Derrode,et al.  Chaînes de Markov cachées floues et segmentation non supervisée d'images , 2004 .

[136]  Saudi Arabia,et al.  Lesion Segmentation in wholebody images of PET , 2004 .

[137]  W. Pieczynski Modèles de Markov en traitement d'images , 2003 .

[138]  Antonio Bosnjak Seminario Segmentation et modélisation dynamiques : application à la reconstruction 3D d'images échocardiographiques , 2003 .

[139]  Abass Alavi,et al.  Whole-body FDG-PET imaging in the management of patients with cancer. , 2002, Seminars in nuclear medicine.

[140]  S. Libutti,et al.  Comparison of SUV and Patlak slope for monitoring of cancer therapy using serial PET scans , 2002, European Journal of Nuclear Medicine and Molecular Imaging.

[141]  W. Pieczynski Chaı̂nes de Markov Triplet , 2002 .

[142]  S. Hain,et al.  FDG-PET as a "metabolic biopsy" tool in thoracic lesions with indeterminate biopsy , 2001, European Journal of Nuclear Medicine.

[143]  Sei-ichiro Kamata,et al.  A New Algorithm for , 1999 .

[144]  Salzenstein,et al.  3 - Sur le choix de méthode de segmentation statistique d'images , 1998 .

[145]  D. Munson A note on Lena , 1996 .

[146]  J. Jett,et al.  Development of multifield three-dimensional conformal radiotherapy of lung cancer using a total lung dose/volume histogram , 1995 .

[147]  H. Malcolm Hudson,et al.  Accelerated image reconstruction using ordered subsets of projection data , 1994, IEEE Trans. Medical Imaging.

[148]  W. Pieczynsky 4 - Champs de Markov cachés et estimation conditionnelle itérative , 1994 .

[149]  Jean-Luc Starck,et al.  1 - Restauration des images multi-échelles par l'algorithme à trous , 1994 .

[150]  G. Celeux,et al.  L'algorithme SEM: un algorithme d'apprentissage probabiliste: pour la reconnaissance de mélange de densités , 1986 .

[151]  J. Dunn A Fuzzy Relative of the ISODATA Process and Its Use in Detecting Compact Well-Separated Clusters , 1973 .

[152]  Samuel Kotz,et al.  Continuous univariate distributions : distributions in statistics , 1970 .

[153]  J. MacQueen Some methods for classification and analysis of multivariate observations , 1967 .