Semiparametric Spatiotemporal Model with Mixed Frequencies

In modelling time series data coming from different sources, frequencies can easily vary since some variable can be measured at higher frequencies, others, at lower frequencies. Given data measured over spatial units and at varying frequencies, we postulated a semiparametric spatiotemporal model. This optimizes utilization of information from variables measured at higher frequency by estimating its nonparametric effect on the response through the backfitting algorithm in and additive modelling framework. Simulation studies support the optimality of the model over simple generalized additive model with aggregation of high frequency predictors to match the dependent variable measured at lower frequency. With quarterly corn production and the dependent variable, the model is fitted with predictors coming from remotely-sensed data (vegetation and precipitation indices), predictive ability is better compared to two benchmark generalized additive models.

[1]  Massimiliano Marcellino,et al.  Midas Vs. Mixed-Frequency VAR: Nowcasting GDP in the Euro Area , 2009 .

[2]  R. Tibshirani,et al.  Linear Smoothers and Additive Models , 1989 .

[3]  Kanti V. Mardia,et al.  Recent trends in modeling spatio-temporal data , 2005 .

[4]  E. Barrios,et al.  An estimation procedure for a spatial-temporal model , 2007 .

[5]  J. Friedman,et al.  Estimating Optimal Transformations for Multiple Regression and Correlation. , 1985 .

[6]  Stergios B. Fotopoulos,et al.  All of Nonparametric Statistics , 2007, Technometrics.

[7]  A. Janvry,et al.  Agriculture for Development , 2021 .

[8]  Ruey S. Tsay,et al.  Nonlinear Additive ARX Models , 1993 .

[9]  Robust estimation of a dynamic spatio-temporal model with structural change , 2017 .

[10]  Jean D. Opsomer,et al.  Asymptotic Properties of Backfitting Estimators , 2000 .

[11]  James L. Powell,et al.  Semiparametric Estimation of Selection Models: Some Empirical Results , 1990 .

[12]  A. Parant [World population prospects]. , 1990, Futuribles.

[13]  H. Tian,et al.  Remotely Sensed Rice Yield Prediction Using Multi-Temporal NDVI Data Derived from NOAA's-AVHRR , 2013, PloS one.

[14]  James L. Powell,et al.  Estimation of semiparametric models , 1994 .

[15]  Erniel B. Barrios,et al.  Robust Estimation of a Spatiotemporal Model with Structural Change , 2011, Commun. Stat. Simul. Comput..

[16]  S. Ghosh,et al.  Spatio‐Temporal Modeling of Agricultural Yield Data with an Application to Pricing Crop Insurance Contracts , 2008, American journal of agricultural economics.

[17]  R. Tibshirani,et al.  Generalized Additive Models , 1986 .

[18]  K. Cassman,et al.  Estimating crop yield potential at regional to national scales , 2013 .

[19]  Massimiliano Marcellino,et al.  A Survey of Econometric Methods for Mixed-Frequency Data , 2013 .

[20]  Michael P. Clements,et al.  Macroeconomic Forecasting With Mixed-Frequency Data , 2008 .

[21]  Kang Wu,et al.  Modeling spatiotemporal pattern of agriculture‐feasible land in China , 2016, Trans. GIS.

[22]  E. Carfagna,et al.  Using Remote Sensing for Agricultural Statistics , 2005 .