Pseudo-Lipschitz property of linear semi-infinite vector optimization problems

This paper is devoted to the study of the pseudo-Lipschitz property of Pareto solution map for the parametric linear semi-infinite vector optimization problem (LSVO). We establish new sufficient conditions for the pseudo-Lipschitz property of the Pareto solution map of (LSVO) under continuous perturbations of the right-hand side of the constraints and linear perturbations of the objective function. Examples are given to illustrate the results obtained.

[1]  Marco A. López,et al.  Metric regularity of semi-infinite constraint systems , 2005, Math. Program..

[2]  M. Todorov,et al.  Kuratowski convergence of the efficient sets in the parametric linear vector semi-infinite optimization , 1996 .

[3]  P. Naccache,et al.  Stability in multicriteria optimization , 1979 .

[4]  F. Javier Toledo-Moreo,et al.  Lipschitz Continuity of the Optimal Value via Bounds on the Optimal Set in Linear Semi-Infinite Optimization , 2006, Math. Oper. Res..

[5]  F. Javier Toledo-Moreo,et al.  Sufficient conditions for total ill-posedness in linear semi-infinite optimization , 2007, Eur. J. Oper. Res..

[6]  Jen-Chih Yao,et al.  Calmness of efficient solution maps in parametric vector optimization , 2011, J. Glob. Optim..

[7]  Bruno Brosowski,et al.  Parametric semi-infinite linear programming I. continuity of the feasible set and of the optimal value , 1984 .

[8]  Yonghui Zhou,et al.  Continuity properties of solutions of vector optimization , 2006 .

[9]  M. A. López-Cerdá,et al.  Linear Semi-Infinite Optimization , 1998 .

[10]  Miguel A. Goberna,et al.  Linear Semi-infinite Optimization: Recent Advances , 2005 .

[11]  Marco A. López,et al.  Stability and Well-Posedness in Linear Semi-Infinite Programming , 1999, SIAM J. Optim..

[12]  Klaus Schnatz,et al.  Continuity properties in semi-infinite parametric linear optimization , 1981 .

[13]  Marco A. López,et al.  Metric Regularity in Convex Semi-Infinite Optimization under Canonical Perturbations , 2007, SIAM J. Optim..

[14]  Miguel A. Goberna,et al.  Sensitivity analysis in linear semi-infinite programming: Perturbing cost and right-hand-side coefficients , 2007, Eur. J. Oper. Res..

[15]  Sanjay J. Patel,et al.  Continuous Optimization , 2005, ISCA 2005.

[16]  Johannes Jahn,et al.  Vector optimization - theory, applications, and extensions , 2004 .

[17]  J. Hiriart-Urruty,et al.  Convex analysis and minimization algorithms , 1993 .

[18]  M. J. Cánovas,et al.  On the Lipschitz Modulus of the Argmin Mapping in Linear Semi-Infinite Optimization , 2008 .

[19]  S. Helbig,et al.  Unicity Results for General Linear Semi-Infinite Optimization Problems Using a New Concept of Active Constraints , 1998 .

[20]  Jen-Chih Yao,et al.  Stability of semi-infinite vector optimization problems under functional perturbations , 2009, J. Glob. Optim..

[21]  Kim C. Border,et al.  Infinite Dimensional Analysis: A Hitchhiker’s Guide , 1994 .

[22]  S. K. Mishra,et al.  Nonconvex Optimization and Its Applications , 2008 .