Number of Prefixes in Trace Monoids: Clique Polynomials and Dependency Graphs

We present some asymptotic properties on the average number of prefixes in trace languages. Such languages are characterized by an alphabet and a set of commutation rules, also called concurrent alphabet, which can be encoded by an independency graph or by its complement, called dependency graph. One key technical result, which has its own interest, concerns general properties of graphs and states that “if an undirected graph admits a transitive orientation, then the multiplicity of the root of minimum modulus of its clique polynomial is smaller or equal to the number of connected components of its complement graph”. As a consequence, under the same hypothesis of transitive orientation of the independency graph, one obtains the relation \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\text {E}}[T_n] = O({\text {E}}[W_n])$$\end{document}, where the random variables \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$T_n$$\end{document} and \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$W_n$$\end{document} represent the number of prefixes in traces of length n under two different fundamental probabilistic models: the uniform distribution among traces of length n (for \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$T_n$$\end{document}), the uniform distribution among words of length n (for \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$W_n$$\end{document}). These two quantities are related to the time complexity of algorithms for solving classical membership problems on trace languages.

[1]  Christian Choffrut,et al.  Determinants and Möbius functions in trace monoids , 1999, Discret. Math..

[2]  David C. Fisher,et al.  Dependence polynomials , 1990, Discret. Math..

[3]  Massimo Santini,et al.  Clique polynomials have a unique root of smallest modulus , 2000, Inf. Process. Lett..

[4]  P. Flajolet,et al.  Analytic Combinatorics: RANDOM STRUCTURES , 2009 .

[5]  Massimiliano Goldwurm Probabilistic Estimation of the Number of Prefixes of a Trace , 1992, Theor. Comput. Sci..

[6]  G. Viennot Heaps of Pieces, I: Basic Definitions and Combinatorial Lemmas , 1989 .

[7]  Axel Bacher,et al.  Analytic Combinatorics of Lattice Paths with Forbidden Patterns, the Vectorial Kernel Method, and Generating Functions for Pushdown Automata , 2019, Algorithmica.

[8]  Volker Diekert Transitive Orientations, Möbius Functions, and Complete Semi-Thue Systems for Free Partially Commutative Monoids , 1988, ICALP.

[9]  Alberto Bertoni,et al.  Analysis of a Class of Algorithms for Problems on Trace Languages , 1986, AAECC.

[10]  Philippe Flajolet,et al.  Analytic Models and Ambiguity of Context-free Languages* , 2022 .

[11]  Pierre Cartier,et al.  Problemes combinatoires de commutation et rearrangements , 1969 .

[12]  Michael Drmota,et al.  Formulae and Asymptotics for Coefficients of Algebraic Functions , 2014, Combinatorics, Probability and Computing.

[13]  Philippe Flajolet,et al.  Analytic Combinatorics , 2009 .

[14]  Alessandro Avellone,et al.  Analysis of algorithms for the recognition of rational and context-free trace languages , 1998, RAIRO Theor. Informatics Appl..

[15]  Alberto Bertoni,et al.  On the Prefixes of a Random Trace and the Membership Problem for Context-Free Trace Languages , 1987, AAECC.

[16]  Luca Breveglieri,et al.  Efficient recognition of trace languages defined by repeat-until loops , 2010, Inf. Comput..

[17]  A. Mazurkiewicz Concurrent Program Schemes and their Interpretations , 1977 .

[18]  Christine Duboc Commutations dans les monoïdes libres : un cadre théorique pour l'étude du parallélisme , 1986 .

[19]  Donald E. Knuth,et al.  Inhomogeneous sorting , 1979, International Journal of Computer & Information Sciences.

[20]  Arto Salomaa,et al.  Automata-Theoretic Aspects of Formal Power Series , 1978, Texts and Monographs in Computer Science.

[21]  Simone Faro,et al.  Efficient Online String Matching Based on Characters Distance Text Sampling , 2020, Algorithmica.

[22]  Giancarlo Mauri,et al.  Equivalence and Membership Problems for Regular Trace Languages , 1982, ICALP.

[23]  Jean Berstel,et al.  Rational series and their languages , 1988, EATCS monographs on theoretical computer science.

[24]  Massimiliano Goldwurm Some Limit Distributions in Analysis of Algorithms for Problems on Trace Languages , 1990, Int. J. Found. Comput. Sci..

[25]  Volker Diekert Möbius Functions and Confluent Semi-Commutations , 1993, Theor. Comput. Sci..

[26]  Wojciech Zielonka,et al.  The Book of Traces , 1995 .