Garbled Quantum Computation

The universal blind quantum computation protocol (UBQC) enables an almost classical client to delegate a quantum computation to an untrusted quantum server (in the form of a garbled quantum circuit) while the security for the client is unconditional. In this contribution, we explore the possibility of extending the verifiable UBQC, to achieve further functionalities following the analogous research for classical circuits (Yao 1986). First, exploring the asymmetric nature of UBQC (the client preparing only single qubits, while the server runs the entire quantum computation), we present a “Yao”-type protocol for secure two-party quantum computation. Similar to the classical setting, our quantum Yao protocol is secure against a specious (quantum honest-but-curious) garbler, but in our case, against a (fully) malicious evaluator. Unlike the previous work on quantum two-party computation of Dupuis et al., 2010, we do not require any online-quantum communication between the garbler and the evaluator and, thus, no extra cryptographic primitive. This feature will allow us to construct a simple universal one-time compiler for any quantum computation using one-time memory, in a similar way to the classical work of Goldwasser et al., 2008, while more efficiently than the previous work of Broadbent et al., 2013.

[1]  Elham Kashefi,et al.  Demonstration of Blind Quantum Computing , 2011, Science.

[2]  Elham Kashefi,et al.  The Quantum Cut-and-Choose Technique and Quantum Two-Party Computation , 2017, ArXiv.

[3]  Christian Schaffner,et al.  Quantum Homomorphic Encryption for Polynomial-Sized Circuits , 2016, CRYPTO.

[4]  Gus Gutoski,et al.  Quantum one-time programs , 2013, IACR Cryptol. ePrint Arch..

[5]  J. Eisert,et al.  Multiparty entanglement in graph states , 2003, quant-ph/0307130.

[6]  Elham Kashefi,et al.  Blindness and Verification of Quantum Computation with One Pure Qubit , 2014, TQC.

[7]  Moni Naor,et al.  Cryptography and Game Theory: Designing Protocols for Exchanging Information , 2008, TCC.

[8]  Petros Wallden,et al.  Optimised resource construction for verifiable quantum computation , 2015 .

[9]  R Raussendorf,et al.  A one-way quantum computer. , 2001, Physical review letters.

[10]  Masahito Hayashi,et al.  Verifiable Measurement-Only Blind Quantum Computing with Stabilizer Testing. , 2015, Physical review letters.

[11]  Moni Naor,et al.  Oblivious transfer and polynomial evaluation , 1999, STOC '99.

[12]  Elham Kashefi,et al.  On optimising quantum communication in verifiable quantum computing , 2015, 1506.06943.

[13]  Matthew McKague,et al.  Interactive Proofs for BQP via Self-Tested Graph States , 2013, Theory Comput..

[14]  Ueli Maurer,et al.  Abstract Cryptography , 2011, ICS.

[15]  Danny Dolev,et al.  Distributed computing meets game theory: robust mechanisms for rational secret sharing and multiparty computation , 2006, PODC '06.

[16]  Joseph Fitzsimons,et al.  Composable Security of Delegated Quantum Computation , 2013, ASIACRYPT.

[17]  Craig Gentry,et al.  Non-interactive Verifiable Computing: Outsourcing Computation to Untrusted Workers , 2010, CRYPTO.

[18]  BroadbentAnne,et al.  Quantum cryptography beyond quantum key distribution , 2016 .

[19]  E. Kashefi,et al.  Unconditionally verifiable blind computation , 2012 .

[20]  E. Diamanti,et al.  Nonlocality and conflicting interest games. , 2014, Physical review letters.

[21]  Simon C. Benjamin,et al.  Freely Scalable Quantum Technologies using Cells of 5-to-50 Qubits with Very Lossy and Noisy Photonic Links , 2014, 1406.0880.

[22]  E. Kashefi,et al.  Rigidity of quantum steering and one-sided device-independent verifiable quantum computation , 2015, 1512.07401.

[23]  Debbie W. Leung,et al.  Unified derivations of measurement-based schemes for quantum computation , 2005 .

[24]  Elad Eban,et al.  Interactive Proofs For Quantum Computations , 2017, 1704.04487.

[25]  Yael Tauman Kalai,et al.  One-Time Programs , 2008, CRYPTO.

[26]  Andrew M. Childs Secure assisted quantum computation , 2001, Quantum Inf. Comput..

[27]  Umesh V. Vazirani,et al.  Classical command of quantum systems , 2013, Nature.

[28]  Adrian Kent,et al.  Unconditionally Secure Bit Commitment , 1998, quant-ph/9810068.

[29]  Christian Schaffner,et al.  Quantum cryptography beyond quantum key distribution , 2015, Designs, Codes and Cryptography.

[30]  E. Kashefi,et al.  Generalized flow and determinism in measurement-based quantum computation , 2007, quant-ph/0702212.

[31]  Anne Broadbent,et al.  How to Verify a Quantum Computation , 2015, Theory Comput..

[32]  J. Eisert,et al.  Quantum Games and Quantum Strategies , 1998, quant-ph/9806088.

[33]  Louis Salvail,et al.  Secure Two-Party Quantum Evaluation of Unitaries against Specious Adversaries , 2010, CRYPTO.

[34]  Charles Herder BLIND QUANTUM COMPUTATION , 2012 .

[35]  Louis Salvail,et al.  Actively Secure Two-Party Evaluation of Any Quantum Operation , 2012, CRYPTO.

[36]  E. Kashefi,et al.  Determinism in the one-way model , 2005, quant-ph/0506062.

[37]  Elham Kashefi,et al.  Blind Multiparty Quantum Computing , 2016 .

[38]  Elham Kashefi,et al.  Universal Blind Quantum Computation , 2008, 2009 50th Annual IEEE Symposium on Foundations of Computer Science.

[39]  Elham Kashefi,et al.  Robustness and device independence of verifiable blind quantum computing , 2015, 1502.02571.

[40]  Gilles Brassard,et al.  Quantum Cryptography , 2005, Encyclopedia of Cryptography and Security.

[41]  A. Yao,et al.  Fair exchange with a semi-trusted third party (extended abstract) , 1997, CCS '97.

[42]  Silvio Micali,et al.  How to play ANY mental game , 1987, STOC.

[43]  Bill Fefferman,et al.  On Quantum Obfuscation , 2016, ArXiv.

[44]  Elham Kashefi,et al.  The measurement calculus , 2004, JACM.

[45]  Elham Kashefi,et al.  Blind quantum computing with two almost identical states , 2016, ArXiv.