Decentralized Cellular Evolutionary Algorithms

In this chapter we study cellular evolutionary algorithms, a kind of decentralized heuristics, and the importance of their induced exploration/exploitation balance on different problems. It is shown that, by choosing synchronous or asynchronous update policies, the selection pressure, and thus the exploration/exploitation tradeoff, can be influenced directly, without using additional ad hoc parameters. The same effect can be obtained by using synchronous algorithms of different neighborhood-to-topology ratio. All the discussed algorithms are applied to a set of benchmark problems. Our conclusions show that the update methods of the asynchronous versions, as well as the ratio of the decentralized algorithm, have a marked influence on the efficiency and accuracy of the resulting algorithm.

[1]  Heinz Mühlenbein,et al.  The Science of Breeding and Its Application to the Breeder Genetic Algorithm (BGA) , 1993, Evolutionary Computation.

[2]  Kalyanmoy Deb,et al.  A Comparative Analysis of Selection Schemes Used in Genetic Algorithms , 1990, FOGA.

[3]  Shigeyoshi Tsutsui,et al.  Forking Genetic Algorithm with Blocking and Shrinking Modes (fGA) , 1993, ICGA.

[4]  Giandomenico Spezzano,et al.  Parallel hybrid method for SAT that couples genetic algorithms and local search , 2001, IEEE Trans. Evol. Comput..

[5]  L. Darrell Whitley,et al.  Evaluating Evolutionary Algorithms , 1996, Artif. Intell..

[6]  Thomas Bäck,et al.  An evolutionary approach to combinatorial optimization problems , 1994, CSC '94.

[7]  Zbigniew Michalewicz,et al.  Genetic Algorithms + Data Structures = Evolution Programs , 1992, Artificial Intelligence.

[8]  L. Darrell Whitley,et al.  Cellular Genetic Algorithms , 1993, ICGA.

[9]  B. Schönfisch,et al.  Synchronous and asynchronous updating in cellular automata. , 1999, Bio Systems.

[10]  Pablo Moscato,et al.  Handbook of Applied Optimization , 2000 .

[11]  Francisco Herrera,et al.  Gradual distributed real-coded genetic algorithms , 2000, IEEE Trans. Evol. Comput..

[12]  Kenneth A. De Jong,et al.  An Analysis of Local Selection Algorithms in a Spatially Structured Evolutionary Algorithm , 1997, ICGA.

[13]  Bernard Manderick,et al.  Fine-Grained Parallel Genetic Algorithms , 1989, ICGA.

[14]  David S. Johnson,et al.  Computers and Intractability: A Guide to the Theory of NP-Completeness , 1978 .

[15]  Vassilios Petridis,et al.  Co-operating Populations with Different Evolution Behaviours , 1996, Proceedings of IEEE International Conference on Evolutionary Computation.

[16]  Zbigniew Michalewicz,et al.  Evolutionary Computation 1 , 2018 .

[17]  D. Ackley A connectionist machine for genetic hillclimbing , 1987 .

[18]  Marco Tomassini,et al.  Evolving Asynchronous and Scalable Non-uniform Cellular Automata , 1997, ICANNGA.

[19]  Martina Gorges-Schleuter,et al.  ASPARAGOS An Asynchronous Parallel Genetic Optimization Strategy , 1989, ICGA.

[20]  Seymour E. Goodman,et al.  Introduction to the Design and Analysis of Algorithms , 1977 .

[21]  Martina Gorges-Schleuter,et al.  An Analysis of Local Selection in Evolution Strategies , 1999, GECCO.

[22]  Hao Chen,et al.  Parallel Genetic Simulated Annealing: A Massively Parallel SIMD Algorithm , 1998, IEEE Trans. Parallel Distributed Syst..

[23]  Hans-Paul Schwefel,et al.  Evolutionary Programming and Evolution Strategies: Similarities and Differences , 1993 .

[24]  Enrique Alba,et al.  Cellular Evolutionary Algorithms: Evaluating the Influence of Ratio , 2000, PPSN.

[25]  Kenneth A. De Jong,et al.  An Analysis of the Effects of Neighborhood Size and Shape on Local Selection Algorithms , 1996, PPSN.

[26]  Kalyanmoy Deb,et al.  Massive Multimodality, Deception, and Genetic Algorithms , 1992, PPSN.

[27]  Thomas Bäck,et al.  Evolutionary algorithms in theory and practice - evolution strategies, evolutionary programming, genetic algorithms , 1996 .

[28]  Enrique Alba,et al.  Parallelism and evolutionary algorithms , 2002, IEEE Trans. Evol. Comput..

[29]  F. MacWilliams,et al.  The Theory of Error-Correcting Codes , 1977 .

[30]  Kenneth A. De Jong,et al.  Using Problem Generators to Explore the Effects of Epistasis , 1997, ICGA.

[31]  Marco Tomassini,et al.  The Parallel Genetic Cellular Automata: Application to Global Function Optimization , 1993 .

[32]  Enrique Alba,et al.  Selection Intensity in Asynchronous Cellular Evolutionary Algorithms , 2003, GECCO.