Saliency and KAZE features assisted object segmentation

In this paper, we propose an unsupervised salient object segmentation approach using saliency and object features. In the proposed method, we utilize occlusion boundaries to construct a region-prior map which is then enhanced using object properties. To reject the non-salient regions, a region rejection strategy is employed based on the amount of detail (saliency information) and density of KAZE keypoints contained in them. Using the region rejection scheme, we obtain a threshold for binarizing the saliency map. The binarized saliency map is used to form a salient superpixel cluster. Finally, an iterative grabcut segmentation is applied with salient texture keypoints (SIFT keypoints on the Gabor convolved texture map) supplemented with salient KAZE keypoints (keypoints inside saliency cluster) as the foreground seeds and the binarized saliency map (obtained using the region rejection strategy) as a probably foreground region. We perform experiments on several datasets and show that the proposed segmentation framework outperforms the state of the art unsupervised salient object segmentation approaches on various performance metrics. Display Omitted Effective object segmentation using saliency and KAZE features is proposed.Region rejection strategy utilizing saliency and density of KAZE keypoints.KAZE keypoints are most suited for characterization of boundaryness.Objectness level information is enhanced with the help of salient keypoints.Outperform state of the art unsupervised salient object segmentation techniques.

[1]  Wenbing Tao,et al.  Integration of the saliency-based seed extraction and random walks for image segmentation , 2014, Neurocomputing.

[2]  Nanning Zheng,et al.  Learning to Detect a Salient Object , 2011, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[3]  Zhi Liu,et al.  Segmentation Driven Low-rank Matrix Recovery for Saliency Detection , 2013, BMVC.

[4]  Xiaochun Cao,et al.  Unsupervised pixel-level video foreground object segmentation via shortest path algorithm , 2016, Neurocomputing.

[5]  Andrew Blake,et al.  "GrabCut" , 2004, ACM Trans. Graph..

[6]  Cordelia Schmid,et al.  A performance evaluation of local descriptors , 2005, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[7]  Shi-Min Hu,et al.  Global contrast based salient region detection , 2011, CVPR 2011.

[8]  Wenbing Tao,et al.  Automatic image segmentation using salient key point extraction and star shape prior , 2014, Signal Process..

[9]  Pascal Fua,et al.  SLIC Superpixels Compared to State-of-the-Art Superpixel Methods , 2012, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[10]  Liang Lin,et al.  PISA: Pixelwise Image Saliency by Aggregating Complementary Appearance Contrast Measures With Edge-Preserving Coherence , 2015, IEEE Transactions on Image Processing.

[11]  S. Süsstrunk,et al.  Frequency-tuned salient region detection , 2009, CVPR 2009.

[12]  Nanning Zheng,et al.  Automatic salient object segmentation based on context and shape prior , 2011, BMVC.

[13]  Andrew Blake,et al.  Geodesic star convexity for interactive image segmentation , 2010, 2010 IEEE Computer Society Conference on Computer Vision and Pattern Recognition.

[14]  N. Otsu A threshold selection method from gray level histograms , 1979 .

[15]  J. Koenderink The structure of images , 2004, Biological Cybernetics.

[16]  Huchuan Lu,et al.  Saliency Detection via Graph-Based Manifold Ranking , 2013, 2013 IEEE Conference on Computer Vision and Pattern Recognition.

[17]  James M. Rehg,et al.  The Secrets of Salient Object Segmentation , 2014, 2014 IEEE Conference on Computer Vision and Pattern Recognition.

[18]  Liming Zhang,et al.  A Novel Multiresolution Spatiotemporal Saliency Detection Model and Its Applications in Image and Video Compression , 2010, IEEE Transactions on Image Processing.

[19]  Carlo Gatta,et al.  Context Aware Keypoint Extraction for Robust Image Representation , 2012, BMVC.

[20]  James H. Elder,et al.  Design and perceptual validation of performance measures for salient object segmentation , 2010, 2010 IEEE Computer Society Conference on Computer Vision and Pattern Recognition - Workshops.

[21]  Jitendra Malik,et al.  Learning to detect natural image boundaries using local brightness, color, and texture cues , 2004, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[22]  Tony Lindeberg,et al.  Scale-Space Theory in Computer Vision , 1993, Lecture Notes in Computer Science.

[23]  Yong Yu,et al.  Unsupervised Object Segmentation with a Hybrid Graph Model (HGM) , 2010, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[24]  Yizhou Yu,et al.  Visual saliency based on multiscale deep features , 2015, 2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

[25]  Philip H. S. Torr,et al.  BING: Binarized normed gradients for objectness estimation at 300fps , 2014, Computational Visual Media.

[26]  Thomas Deselaers,et al.  What is an object? , 2010, 2010 IEEE Computer Society Conference on Computer Vision and Pattern Recognition.

[27]  Martial Hebert,et al.  Toward Objective Evaluation of Image Segmentation Algorithms , 2007, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[28]  Jitendra Malik,et al.  Simultaneous Detection and Segmentation , 2014, ECCV.

[29]  Santiago Manen,et al.  Prime Object Proposals with Randomized Prim's Algorithm , 2013, 2013 IEEE International Conference on Computer Vision.

[30]  Loong Fah Cheong,et al.  Active Visual Segmentation , 2012, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[31]  G LoweDavid,et al.  Distinctive Image Features from Scale-Invariant Keypoints , 2004 .

[32]  Koen E. A. van de Sande,et al.  A comparison of color features for visual concept classification , 2008, CIVR '08.

[33]  C. Lawrence Zitnick,et al.  Edge foci interest points , 2011, 2011 International Conference on Computer Vision.

[34]  Edward Gilbert-Kawai,et al.  Fick’s law of diffusion , 2014 .

[35]  Joachim Weickert,et al.  Efficient image segmentation using partial differential equations and morphology , 2001, Pattern Recognit..

[36]  Jitendra Malik,et al.  Scale-Space and Edge Detection Using Anisotropic Diffusion , 1990, IEEE Trans. Pattern Anal. Mach. Intell..

[37]  John F. Canny,et al.  A Computational Approach to Edge Detection , 1986, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[38]  Cristian Sminchisescu,et al.  Constrained parametric min-cuts for automatic object segmentation , 2010, 2010 IEEE Computer Society Conference on Computer Vision and Pattern Recognition.

[39]  Alexei A. Efros,et al.  Recovering Occlusion Boundaries from a Single Image , 2007, 2007 IEEE 11th International Conference on Computer Vision.

[40]  Derek Hoiem,et al.  Category-Independent Object Proposals with Diverse Ranking , 2014, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[41]  C. Lawrence Zitnick,et al.  Edge Boxes: Locating Object Proposals from Edges , 2014, ECCV.

[42]  Yael Pritch,et al.  Saliency filters: Contrast based filtering for salient region detection , 2012, 2012 IEEE Conference on Computer Vision and Pattern Recognition.

[43]  Cordelia Schmid,et al.  Shape recognition with edge-based features , 2003, BMVC.

[44]  Cristian Sminchisescu,et al.  CPMC: Automatic Object Segmentation Using Constrained Parametric Min-Cuts , 2012, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[45]  Antonio Torralba,et al.  LabelMe: A Database and Web-Based Tool for Image Annotation , 2008, International Journal of Computer Vision.

[46]  Andrea Vedaldi,et al.  Vlfeat: an open and portable library of computer vision algorithms , 2010, ACM Multimedia.

[47]  Luc Van Gool,et al.  The Pascal Visual Object Classes (VOC) Challenge , 2010, International Journal of Computer Vision.

[48]  Jingdong Wang,et al.  Salient Object Detection: A Discriminative Regional Feature Integration Approach , 2013, International Journal of Computer Vision.

[49]  Koen E. A. van de Sande,et al.  Selective Search for Object Recognition , 2013, International Journal of Computer Vision.

[50]  Max A. Viergever,et al.  Linear scale-space , 1994, Journal of Mathematical Imaging and Vision.

[51]  Adrien Bartoli,et al.  KAZE Features , 2012, ECCV.

[52]  Tom Drummond,et al.  Machine Learning for High-Speed Corner Detection , 2006, ECCV.

[53]  Esa Rahtu,et al.  Segmenting Salient Objects from Images and Videos , 2010, ECCV.

[54]  Nebojsa Jojic,et al.  LOCUS: learning object classes with unsupervised segmentation , 2005, Tenth IEEE International Conference on Computer Vision (ICCV'05) Volume 1.

[55]  Shi-Min Hu,et al.  SalientShape: group saliency in image collections , 2013, The Visual Computer.

[56]  Jiri Matas,et al.  In the Saddle: Chasing fast and repeatable features , 2016, 2016 23rd International Conference on Pattern Recognition (ICPR).

[57]  Yueting Zhuang,et al.  DeepSaliency: Multi-Task Deep Neural Network Model for Salient Object Detection , 2015, IEEE Transactions on Image Processing.

[58]  Nicu Sebe,et al.  Learning to Group Objects , 2014, 2014 IEEE Conference on Computer Vision and Pattern Recognition.

[59]  Moncef Gabbouj,et al.  Visual saliency by extended quantum cuts , 2015, 2015 IEEE International Conference on Image Processing (ICIP).

[60]  Cordelia Schmid,et al.  Discriminative spatial saliency for image classification , 2012, 2012 IEEE Conference on Computer Vision and Pattern Recognition.

[61]  Christopher G. Harris,et al.  A Combined Corner and Edge Detector , 1988, Alvey Vision Conference.

[62]  Ivan V. Bajic,et al.  Saliency-Aware Video Compression , 2014, IEEE Transactions on Image Processing.

[63]  Ali Borji,et al.  Salient Object Detection: A Benchmark , 2015, IEEE Transactions on Image Processing.

[64]  Li Xu,et al.  Hierarchical Saliency Detection , 2013, 2013 IEEE Conference on Computer Vision and Pattern Recognition.

[65]  Huchuan Lu,et al.  SaliencyRank: Two-stage manifold ranking for salient object detection , 2015, Computational Visual Media.

[66]  Brejesh Lall,et al.  Characterizing objects with SIKA features for multiclass classification , 2016, Appl. Soft Comput..

[67]  Xavier Bresson,et al.  Fast Texture Segmentation Based on Semi-Local Region Descriptor and Active Contour , 2009 .

[68]  Yong Jae Lee,et al.  Discovering important people and objects for egocentric video summarization , 2012, 2012 IEEE Conference on Computer Vision and Pattern Recognition.

[69]  Thomas Deselaers,et al.  Measuring the Objectness of Image Windows , 2011, IEEE Transactions on Pattern Analysis and Machine Intelligence.