Topological quantum number and critical exponent from conductance fluctuations at the quantum Hall plateau transition

The conductance of a two-dimensional electron gas at the transition from one quantum Hall plateau to the next has sample-specific fluctuations as a function of magnetic field and Fermi energy. Here we identify a universal feature of these mesoscopic fluctuations in a Corbino geometry: The amplitude of the magnetoconductance oscillations has an e^2/h resonance in the transition region, signaling a change in the topological quantum number of the insulating bulk. This resonance provides a signed scaling variable for the critical exponent of the phase transition (distinct from existing positive definite scaling variables).