Robust structural feedback linearization based on the nonlinearities rejection

Abstract In this paper, we consider a class of affine control systems and propose a new structural feedback linearization technique. This relatively simple approach involves a generic linear-type control scheme and follows the classic failure detection methodology. The robust linearization idea proposed in this contribution makes it possible an effective rejection of nonlinearities that belong to a specific class of functions. The nonlinearities under consideration are interpreted here as specific signals that affect the initially given systems dynamics. The implementability and efficiency of the proposed robust control methodology is illustrated via the attitude control of a Planar Vertical Take Off Landing (PVTOL) system.

[1]  A. Isidori Nonlinear Control Systems: An Introduction , 1986 .

[2]  J. Schumacher,et al.  A nine-fold canonical decomposition for linear systems , 1984 .

[3]  Rolf Isermann,et al.  Process fault detection based on modeling and estimation methods - A survey , 1984, Autom..

[4]  Gerd Hirzinger,et al.  Feedback linearization and simultaneous stiffness-position control of robots with antagonistic actuated joints , 2007, Proceedings 2007 IEEE International Conference on Robotics and Automation.

[5]  Juhoon Back,et al.  Dynamic Observer Error Linearization , 2005, Proceedings of the 44th IEEE Conference on Decision and Control.

[6]  A. Papoulis Signal Analysis , 1977 .

[7]  Scott A. Bortoff Approximate state-feedback linearization using spline functions , 1997, Autom..

[8]  Jianbin Qiu,et al.  A Piecewise-Markovian Lyapunov Approach to Reliable Output Feedback Control for Fuzzy-Affine Systems With Time-Delays and Actuator Faults , 2018, IEEE Transactions on Cybernetics.

[9]  Chang-Wan Kim,et al.  Feedback Linearization Control of a Cardiovascular Circulatory Simulator , 2015, IEEE Transactions on Control Systems Technology.

[10]  Hamid Reza Karimi,et al.  Fuzzy-Affine-Model-Based Memory Filter Design of Nonlinear Systems With Time-Varying Delay , 2018, IEEE Transactions on Fuzzy Systems.

[11]  W. Wonham Linear Multivariable Control: A Geometric Approach , 1974 .

[12]  Wassim M. Haddad,et al.  Impulsive and Hybrid Dynamical Systems: Stability, Dissipativity, and Control , 2006 .

[13]  Sergio Salazar,et al.  Synthesis of a robust linear structural feedback linearization scheme for an experimental quadrotor , 2019, 2019 18th European Control Conference (ECC).

[14]  H. Takata,et al.  Nonlinear feedback control of stabilization problem via formal linearization using Taylor expansion , 2008, 2008 International Symposium on Information Theory and Its Applications.

[15]  Mark W. Spong,et al.  Robot dynamics and control , 1989 .

[16]  C. Desoer,et al.  Feedback Systems: Input-Output Properties , 1975 .

[17]  Hassan K. Khalil,et al.  Robust stabilization of non-minimum phase nonlinear systems using extended high gain observers , 2011, 2008 American Control Conference.

[18]  G.M. Hassan,et al.  Feedback linearized strategies for collaborative nonholonomic robots , 2007, 2007 International Conference on Control, Automation and Systems.

[19]  Ron J. Patton,et al.  Active FTC for Non-linear Aircraft based on Feedback Linearization and Robust Estimation , 2012 .

[20]  M. Massoumnia A geometric approach to the synthesis of failure detection filters , 1986 .

[21]  Weihua Zhao,et al.  Quadcopter formation flight control combining MPC and robust feedback linearization , 2014, J. Frankl. Inst..

[22]  Alan S. Willsky,et al.  A survey of design methods for failure detection in dynamic systems , 1976, Autom..

[23]  Weiping Li,et al.  Applied Nonlinear Control , 1991 .

[24]  J. Willems Input-output and state-space representations of finite-dimensional linear time-invariant systems , 1983 .

[25]  C. A. Desoer,et al.  Nonlinear Systems Analysis , 1978 .

[26]  Dong-Choon Lee,et al.  Feedback Linearization Control of Three-Phase UPS Inverter Systems , 2010, IEEE Transactions on Industrial Electronics.

[27]  Jan C. Willems,et al.  Introduction to mathematical systems theory: a behavioral approach, Texts in Applied Mathematics 26 , 1999 .

[28]  Arshad Mahmood,et al.  Decentrailized formation flight control of quadcopters using robust feedback linearization , 2017, J. Frankl. Inst..

[29]  Michael V. Cook,et al.  Flight Dynamics Principles: A Linear Systems Approach to Aircraft Stability and Control , 2007 .

[30]  Arjan van der Schaft,et al.  Non-linear dynamical control systems , 1990 .

[31]  H. Rosenbrock,et al.  State-space and multivariable theory, , 1970 .

[32]  Ali Saberi,et al.  Fundamental problems in fault detection and identification , 2000 .

[33]  Thomas Kailath,et al.  Linear Systems , 1980 .

[34]  Sergio Salazar,et al.  Structural feedback linearization based on nonlinearities rejection , 2017 .

[35]  Xiaoming Hu,et al.  Non-regular feedback linearization of nonlinear systems via a normal form algorithm , 2004, Autom..

[36]  Sergio Salazar,et al.  A robust linear control methodology based on fictitious failure rejection , 2016, 2016 European Control Conference (ECC).

[37]  Marilena Vendittelli,et al.  WMR control via dynamic feedback linearization: design, implementation, and experimental validation , 2002, IEEE Trans. Control. Syst. Technol..

[38]  Boris Lohmann,et al.  Quasi-static feedback linearization for the translational dynamics of a quadrotor helicopter , 2012, 2012 American Control Conference (ACC).

[39]  Pavol Brunovský,et al.  A classification of linear controllable systems , 1970, Kybernetika.

[40]  Akira Inoue,et al.  Stabilization controller for a cart-type inverted pendulum via a partial linearization method , 2010, Proceedings of the 2010 International Conference on Modelling, Identification and Control.

[41]  Alberto Isidori,et al.  A Relation Between Different Approaches to Input–Output Linearization via Feedback , 1985 .

[42]  Wassim M. Haddad,et al.  Dissipativity theory and stability of feedback interconnections for hybrid dynamical systems , 2001 .

[43]  Rogelio Lozano,et al.  Quad Rotorcraft Control: Vision-Based Hovering and Navigation , 2012 .