Ontology-Based Modeling of Control Logic in Building Automation Systems

The control logic implemented in building automation systems (BAS) has a significant impact on the overall energy demand of the building. However, information on the control logic, if documented, is often concealed from further data integration and reuse in heterogeneous information silos using disparate data formats. In particular, existing data formats and information models offer limited support to describe control logic explicitly. Ontology-based modeling of the control logic of BAS can potentially result in a versatile source of information for information-driven processes to further increase the performance of technical equipment in a building. Therefore, we present a novel information model, CTRLont, which allows to formally specify the domain of control logic in BAS. We demonstrate the usefulness of the novel information model by using it as a knowledge base for automating rule-based verification of designed control logic in BAS. We successfully apply the methodology to a simple control of an air handling unit and indicate a number of future steps.

[1]  Marian Adamski,et al.  Model Checking of UML Activity Diagrams in Logic Controllers Design , 2014, DepCoS-RELCOMEX.

[2]  J. Schein An information model for building automation systems , 2007 .

[3]  Amit P. Sheth,et al.  The SSN ontology of the W3C semantic sensor network incubator group , 2012, J. Web Semant..

[4]  James O'Donnell SIMMODEL: A DOMAIN DATA MODEL FOR WHOLE BUILDING ENERGY SIMULATION , 2013 .

[5]  Sebastian Rudolph,et al.  Foundations of Semantic Web Technologies , 2009 .

[6]  Wolfgang Kastner,et al.  Communication systems for building automation and control , 2005, Proceedings of the IEEE.

[7]  Sanja Vranes,et al.  Ontology-based facility data model for energy management , 2015, Adv. Eng. Informatics.

[8]  Guntis Barzdins,et al.  OWLGrEd: a UML Style Graphical Notation and Editor for OWL 2 , 2010, OWLED.

[9]  Fulvio Corno,et al.  DogOnt - Ontology Modeling for Intelligent Domotic Environments , 2008, SEMWEB.

[10]  K. Wenzel,et al.  Mathematical Computations for Linked Data Applications with OpenMath , 2012 .

[11]  W. Granzer,et al.  Integration of heterogeneous building automation systems using ontologies , 2008, 2008 34th Annual Conference of IEEE Industrial Electronics.

[12]  B. Hensel,et al.  BASont - A modular, adaptive building automation system ontology , 2012, IECON 2012 - 38th Annual Conference on IEEE Industrial Electronics Society.

[13]  Pieter Pauwels,et al.  Semantic web technologies in AEC industry: A literature overview , 2017 .

[14]  Takoua Ghariani,et al.  The SEAS Knowledge Model , 2017 .

[15]  W. Kastner,et al.  The Evolution of Factory and Building Automation , 2011, IEEE Industrial Electronics Magazine.

[16]  Hendro Wicaksono,et al.  Semi-automated Ontology Population from Building Construction Drawings , 2013, KEOD.

[17]  Stefan Plesser Aktive Funktionsbeschreibungen zur Planung und Überwachung des Betriebs von Gebäuden und Anlagen , 2013 .

[18]  Pieter de Wilde,et al.  The gap between predicted and measured energy performance of buildings: A framework for investigation , 2014 .

[19]  Han Hong-yu,et al.  Web Ontology Language OWL and Reasoning , 2010 .

[20]  Peter Dolog,et al.  Model-Driven Navigation Design for Semantic Web Applications with the UML-Guide , 2004, ICWE Workshops.

[21]  Anastasios I. Dounis,et al.  Advanced control systems engineering for energy and comfort management in a building environment--A review , 2009 .

[22]  Srinivas Katipamula,et al.  Review Article: Methods for Fault Detection, Diagnostics, and Prognostics for Building Systems—A Review, Part I , 2005 .

[23]  Klaus Kabitzsch,et al.  Automated Design of Building Automation Systems , 2010, IEEE Transactions on Industrial Electronics.

[24]  E. Prud hommeaux,et al.  SPARQL query language for RDF , 2011 .

[25]  Marcus M. Keane,et al.  A performance assessment ontology for the environmental and energy management of buildings , 2015 .

[26]  Pieter Pauwels,et al.  EXPRESS to OWL for construction industry: Towards a recommendable and usable ifcOWL ontology , 2016 .

[27]  Bernhard Rumpe,et al.  The Energy Navigator - A Web based Platform for functional Quality Mangement in Buildings , 2014, ArXiv.

[28]  Ondrej Holub,et al.  Knowledge-Based Fault Propagation in Building Automation Systems , 2016, 2016 International Conference on Systems Informatics, Modelling and Simulation (SIMS).

[29]  Jürgen Ebert,et al.  Ein Referenzschema für die Sprachen der IEC 61131 , 2008 .

[30]  Vassilis Christophides,et al.  Resource Description Framework (RDF) Schema (RDFS) , 2009, Encyclopedia of Database Systems.

[31]  Thierry S. Nouidui,et al.  Modelica Buildings library , 2014 .

[32]  N. F. Noy,et al.  Ontology Development 101: A Guide to Creating Your First Ontology , 2001 .

[33]  Edward A. Lee,et al.  Taming heterogeneity - the Ptolemy approach , 2003, Proc. IEEE.

[34]  Wolfgang Kastner,et al.  ThinkHome Energy Efficiency in Future Smart Homes , 2011, EURASIP J. Embed. Syst..

[35]  Jasper Roes,et al.  Created in Close Interaction with the Industry: The Smart Appliances REFerence (SAREF) Ontology , 2015, FOMI.