Membrane protein structural bioinformatics.

Despite the increasing number of recently solved membrane protein structures, coverage of membrane protein fold space remains relatively sparse. This necessitates the use of computational strategies to investigate membrane protein structure, allowing us to further our understanding of how membrane proteins carry out their diverse range of functions, while aiding the development of novel predictive tools with which to probe uncharacterised folds. Analysis of known structures, the application of machine learning techniques, molecular dynamics simulations and protein structure prediction have enabled significant advances to be made in the field of membrane protein research. In this communication, the key bioinformatic methods that allow the characterisation of membrane proteins are reviewed, the tools available for the structural analysis of membrane proteins are presented and the contribution these tools have made to expanding our understanding of membrane protein structure, function and stability is discussed.

[1]  Werner Treptow,et al.  Gating motions in voltage-gated potassium channels revealed by coarse-grained molecular dynamics simulations. , 2008, The journal of physical chemistry. B.

[2]  J. Thornton,et al.  PROCHECK: a program to check the stereochemical quality of protein structures , 1993 .

[3]  E. Lindahl,et al.  Membrane proteins: molecular dynamics simulations. , 2008, Current opinion in structural biology.

[4]  Robert Preissner,et al.  SuperLooper—a prediction server for the modeling of loops in globular and membrane proteins , 2009, Nucleic Acids Res..

[5]  Stavros J. Hamodrakas,et al.  A Hidden Markov Model method, capable of predicting and discriminating β-barrel outer membrane proteins , 2004, BMC Bioinformatics.

[6]  Arne Elofsson,et al.  Coils in the membrane core are conserved and functionally important. , 2008, Journal of molecular biology.

[7]  Zsuzsanna Dosztányi,et al.  TMDET: web server for detecting transmembrane regions of proteins by using their 3D coordinates , 2005, Bioinform..

[8]  Piero Fariselli,et al.  A new decoding algorithm for hidden Markov models improves the prediction of the topology of all-beta membrane proteins , 2005, BMC Bioinformatics.

[9]  Wen-Lian Hsu,et al.  TMPad: an integrated structural database for helix-packing folds in transmembrane proteins , 2010, Nucleic Acids Res..

[10]  Marcin J. Skwark,et al.  SPOCTOPUS: a combined predictor of signal peptides and membrane protein topology , 2008, Bioinform..

[11]  Andrei L. Lomize,et al.  OPM: Orientations of Proteins in Membranes database , 2006, Bioinform..

[12]  Christopher G. Tate,et al.  Overcoming barriers to membrane protein structure determination , 2011, Nature Biotechnology.

[13]  S H White,et al.  MPtopo: A database of membrane protein topology , 2001, Protein science : a publication of the Protein Society.

[14]  H. Weinstein,et al.  Molecular dynamics simulations predict a tilted orientation for the helical region of dynorphin A(1-17) in dimyristoylphosphatidylcholine bilayers. , 2000, Biophysical journal.

[15]  C Kooperberg,et al.  Assembly of protein tertiary structures from fragments with similar local sequences using simulated annealing and Bayesian scoring functions. , 1997, Journal of molecular biology.

[16]  Burkhard Rost,et al.  PROFtmb: a web server for predicting bacterial transmembrane beta barrel proteins , 2006, Nucleic Acids Res..

[17]  Burkhard Rost,et al.  PROFcon: novel prediction of long-range contacts , 2005, Bioinform..

[18]  David Baker,et al.  Protein Structure Prediction Using Rosetta , 2004, Numerical Computer Methods, Part D.

[19]  P. Raman,et al.  The Membrane Protein Data Bank , 2005, Cellular and Molecular Life Sciences.

[20]  Toby W Allen,et al.  On the thermodynamic stability of a charged arginine side chain in a transmembrane helix , 2007, Proceedings of the National Academy of Sciences.

[21]  Andrei L Lomize,et al.  Positioning of proteins in membranes: A computational approach , 2006, Protein science : a publication of the Protein Society.

[22]  B. Honig,et al.  On the accuracy of homology modeling and sequence alignment methods applied to membrane proteins. , 2006, Biophysical journal.

[23]  B. Roux,et al.  Biogenesis of the pore architecture of a voltage-gated potassium channel , 2011, Proceedings of the National Academy of Sciences.

[24]  Ben M. Webb,et al.  Comparative Protein Structure Modeling Using MODELLER , 2007, Current protocols in protein science.

[25]  A. Isvoran,et al.  Membrane interface composition drives the structure and the tilt of the single transmembrane helix protein PMP1: MD studies. , 2011, Biophysical journal.

[26]  Younes Mokrab,et al.  CGDB: A database of membrane protein/lipid interactions by coarse-grained molecular dynamics simulations , 2008, Molecular membrane biology.

[27]  Benoît Roux,et al.  Perspectives on: Ion selectivity: Ion selectivity in channels and transporters , 2011 .

[28]  Yang Zhang,et al.  Structure Modeling of All Identified G Protein–Coupled Receptors in the Human Genome , 2006, PLoS Comput. Biol..

[29]  Nicolas Le Novère,et al.  LGICdb: a manually curated sequence database after the genomes , 2005, Nucleic Acids Res..

[30]  Dmitrij Frishman,et al.  Current status of membrane protein structure classification , 2010, Proteins.

[31]  D. Engelman,et al.  Glycophorin A dimerization is driven by specific interactions between transmembrane alpha-helices. , 1992, The Journal of biological chemistry.

[32]  R. Stevens,et al.  FoldGPCR: Structure prediction protocol for the transmembrane domain of G protein‐coupled receptors from class A , 2010, Proteins.

[33]  Björn Wallner,et al.  Model quality assessment for membrane proteins , 2010, Bioinform..

[34]  Petra Fromme,et al.  Three-dimensional structure of cyanobacterial photosystem I at 2.5 Å resolution , 2001, Nature.

[35]  Siewert J Marrink,et al.  Mechanosensitive membrane channels in action. , 2008, Biophysical journal.

[36]  David van der Spoel,et al.  Molecular dynamics simulations of a membrane protein-micelle complex in vacuo. , 2009, Journal of the American Chemical Society.

[37]  Peter Agre,et al.  Structural basis for conductance by the archaeal aquaporin AqpM at 1.68 A. , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[38]  S. White,et al.  Biophysical dissection of membrane proteins , 2009, Nature.

[39]  D. Doyle,et al.  Structural themes in ion channels , 2004, European Biophysics Journal.

[40]  J. Orgel Sequence context and modified hydrophobic moment plots help identify 'horizontal' surface helices in transmembrane protein structure prediction. , 2004, Journal of structural biology.

[41]  Mark S. P. Sansom,et al.  Molecular dynamics simulations and membrane protein structure quality , 2008, European Biophysics Journal.

[42]  Peter L. Freddolino,et al.  Predicted 3D structure for the human beta 2 adrenergic receptor and its binding site for agonists and antagonists. , 2004, Proceedings of the National Academy of Sciences of the United States of America.

[43]  Wen-Lian Hsu,et al.  Predicting helix–helix interactions from residue contacts in membrane proteins , 2009, Bioinform..

[44]  Charles L. Brooks,et al.  Community-wide assessment of GPCR structure modelling and ligand docking: GPCR Dock 2008 , 2009, Nature Reviews Drug Discovery.

[45]  István Simon,et al.  The HMMTOP transmembrane topology prediction server , 2001, Bioinform..

[46]  E. Berry,et al.  3-Nitropropionic Acid Is a Suicide Inhibitor of Mitochondrial Respiration That, upon Oxidation by Complex II, Forms a Covalent Adduct with a Catalytic Base Arginine in the Active Site of the Enzyme* , 2005, Journal of Biological Chemistry.

[47]  Syma Khalid,et al.  Coarse-grained molecular dynamics simulations of membrane proteins and peptides. , 2007, Journal of structural biology.

[48]  Arne Elofsson,et al.  Identification of correct regions in protein models using structural, alignment, and consensus information , 2006, Protein science : a publication of the Protein Society.

[49]  David C. Jones Predicting novel protein folds by using FRAGFOLD , 2001, Proteins.

[50]  Shay Bar-Haim,et al.  G protein-coupled receptors: in silico drug discovery in 3D. , 2004, Proceedings of the National Academy of Sciences of the United States of America.

[51]  Erik L. L. Sonnhammer,et al.  An HMM posterior decoder for sequence feature prediction that includes homology information , 2005, ISMB.

[52]  Pavel Strop,et al.  The structures of BtuCD and MscS and their implications for transporter and channel function , 2003, FEBS letters.

[53]  Stefan Günther,et al.  Hydrogen-bonding and packing features of membrane proteins: functional implications. , 2008, Biophysical journal.

[54]  Membrane insertion of a voltage sensor helix. , 2011, Biophysical journal.

[55]  Karen Hecht,et al.  Aromatic and cation-pi interactions enhance helix-helix association in a membrane environment. , 2007, Biochemistry.

[56]  Duan Yang,et al.  The evolution of transmembrane helix kinks and the structural diversity of G protein-coupled receptors. , 2004, Proceedings of the National Academy of Sciences of the United States of America.

[57]  J. Deisenhofer,et al.  Structure of the protein subunits in the photosynthetic reaction centre of Rhodopseudomonas viridis at 3Å resolution , 1985, Nature.

[58]  Klaus Schulten,et al.  Free-energy cost for translocon-assisted insertion of membrane proteins , 2011, Proceedings of the National Academy of Sciences.

[59]  Arne Elofsson,et al.  MPRAP: An accessibility predictor for a-helical transmem-brane proteins that performs well inside and outside the membrane , 2010, BMC Bioinformatics.

[60]  Alfonso Valencia,et al.  Assessment of intramolecular contact predictions for CASP7 , 2007, Proteins.

[61]  T. Sakmar,et al.  Evidence that helix 8 of rhodopsin acts as a membrane-dependent conformational switch. , 2002, Biochemistry.

[62]  Ian Sillitoe,et al.  Extending CATH: increasing coverage of the protein structure universe and linking structure with function , 2010, Nucleic Acids Res..

[63]  S. White,et al.  Membrane protein folding and stability: physical principles. , 1999, Annual review of biophysics and biomolecular structure.

[64]  Richard Bonneau,et al.  Ab initio protein structure prediction of CASP III targets using ROSETTA , 1999, Proteins.

[65]  Marco Biasini,et al.  Toward the estimation of the absolute quality of individual protein structure models , 2010, Bioinform..

[66]  Nir Ben-Tal,et al.  Structural determinants of transmembrane helical proteins. , 2009, Structure.

[67]  Nagarajan Vaidehi,et al.  Position of helical kinks in membrane protein crystal structures and the accuracy of computational prediction. , 2009, Journal of molecular graphics & modelling.

[68]  Volkhard Helms,et al.  TMBHMM: a frequency profile based HMM for predicting the topology of transmembrane beta barrel proteins and the exposure status of transmembrane residues. , 2011, Biochimica et biophysica acta.

[69]  D. Tieleman,et al.  The MARTINI force field: coarse grained model for biomolecular simulations. , 2007, The journal of physical chemistry. B.

[70]  S. Iwata,et al.  Structure and Mechanism of the Lactose Permease of Escherichia coli , 2003, Science.

[71]  Stavros J. Hamodrakas,et al.  Algorithms for incorporating prior topological information in HMMs: application to transmembrane proteins , 2006, BMC Bioinformatics.

[72]  Gert Vriend,et al.  GPCRDB information system for G protein-coupled receptors , 2003, Nucleic Acids Res..

[73]  Richard A Friesner,et al.  Successful prediction of the intra- and extracellular loops of four G-protein-coupled receptors , 2011, Proceedings of the National Academy of Sciences.

[74]  Benoît Roux,et al.  Two mechanisms of ion selectivity in protein binding sites , 2010, Proceedings of the National Academy of Sciences.

[75]  M. Schick,et al.  Molecular theory of hydrophobic mismatch between lipids and peptides , 2001, cond-mat/0108237.

[76]  Sebastian Kelm,et al.  MEDELLER: homology-based coordinate generation for membrane proteins , 2010, Bioinform..

[77]  W F Drew Bennett,et al.  Distribution of amino acids in a lipid bilayer from computer simulations. , 2008, Biophysical journal.

[78]  Wonpil Im,et al.  Revisiting hydrophobic mismatch with free energy simulation studies of transmembrane helix tilt and rotation. , 2010, Biophysical journal.

[79]  Zsuzsanna Dosztányi,et al.  PDB_TM: selection and membrane localization of transmembrane proteins in the protein data bank , 2004, Nucleic Acids Res..

[80]  M. Sansom,et al.  How Does a Voltage Sensor Interact with a Lipid Bilayer? Simulations of a Potassium Channel Domain , 2007, Structure.

[81]  Andreas Engel,et al.  Structural determinants of water permeation through aquaporin-1 , 2000, Nature.

[82]  W. DeGrado,et al.  Helix-packing motifs in membrane proteins , 2006, Proceedings of the National Academy of Sciences.

[83]  Erik Granseth,et al.  Structural classification and prediction of reentrant regions in alpha-helical transmembrane proteins: application to complete genomes. , 2006, Journal of molecular biology.

[84]  Ben M. Webb,et al.  Comparative Protein Structure Modeling Using Modeller , 2006, Current protocols in bioinformatics.

[85]  Alessandro Senes,et al.  Folding of helical membrane proteins: the role of polar, GxxxG-like and proline motifs. , 2004, Current opinion in structural biology.

[86]  D Baker,et al.  Prediction of membrane protein structures with complex topologies using limited constraints , 2009, Proceedings of the National Academy of Sciences.

[87]  D. Engelman,et al.  Motifs of two small residues can assist but are not sufficient to mediate transmembrane helix interactions. , 2004, Journal of molecular biology.

[88]  W. DeGrado,et al.  Polar side chains drive the association of model transmembrane peptides. , 2001, Proceedings of the National Academy of Sciences of the United States of America.

[89]  James J. P. Stewart,et al.  Application of the PM6 method to modeling proteins , 2009, Journal of molecular modeling.

[90]  Janet M. Thornton,et al.  PoreWalker: A Novel Tool for the Identification and Characterization of Channels in Transmembrane Proteins from Their Three-Dimensional Structure , 2009, PLoS Comput. Biol..

[91]  G. Heijne Membrane protein structure prediction: Hydrophobicity analysis and the positive-inside rule , 1992 .

[92]  D. Frishman,et al.  Structural comparison and classification of alpha‐helical transmembrane domains based on helix interaction patterns , 2010, Proteins.

[93]  Yu-Yen Ou,et al.  Prediction of membrane spanning segments and topology in β‐barrel membrane proteins at better accuracy , 2010, J. Comput. Chem..

[94]  José D Faraldo-Gómez,et al.  Membrane protein dynamics and detergent interactions within a crystal: a simulation study of OmpA. , 2006, Proceedings of the National Academy of Sciences of the United States of America.

[95]  D. T. Jones,et al.  Folding in lipid membranes (FILM): A novel method for the prediction of small membrane protein 3D structures , 2003, Proteins.

[96]  D. Langosch,et al.  A Heptad Motif of Leucine Residues Found in Membrane Proteins Can Drive Self-assembly of Artificial Transmembrane Segments* , 1999, The Journal of Biological Chemistry.

[97]  R. Koeppe,et al.  Charged or Aromatic Anchor Residue Dependence of Transmembrane Peptide Tilt* , 2010, The Journal of Biological Chemistry.

[98]  Klaus Schulten,et al.  Molecular dynamics studies of the archaeal translocon. , 2006, Biophysical journal.

[99]  S H White,et al.  Energetics, stability, and prediction of transmembrane helices. , 2001, Journal of molecular biology.

[100]  G Vriend,et al.  WHAT IF: a molecular modeling and drug design program. , 1990, Journal of molecular graphics.

[101]  Virgil L. Woods,et al.  Modest stabilization by most hydrogen-bonded side-chain interactions in membrane proteins , 2008, Nature.

[102]  Thomas L. Madden,et al.  Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. , 1997, Nucleic acids research.

[103]  Jaime Prilusky,et al.  Assessment of CASP8 structure predictions for template free targets , 2009, Proteins.

[104]  Manfred Auer,et al.  Structure of fumarate reductase from Wolinella succinogenes at 2.2 Å resolution , 1999, Nature.

[105]  Youyong Li,et al.  Prediction of the Structure of G-Protein Coupled Receptors and of Bound Ligands with Applications for Drug Design , 2008, Pacific Symposium on Biocomputing.

[106]  Sergei Sukharev,et al.  Straightening and sequential buckling of the pore-lining helices define the gating cycle of MscS , 2007, Nature Structural &Molecular Biology.

[107]  A. Krogh,et al.  A combined transmembrane topology and signal peptide prediction method. , 2004, Journal of molecular biology.

[108]  J. Bowie Solving the membrane protein folding problem , 2005, Nature.

[109]  Syma Khalid,et al.  Coarse-grained MD simulations of membrane protein-bilayer self-assembly. , 2008, Structure.

[110]  Pierre Baldi,et al.  Improved residue contact prediction using support vector machines and a large feature set , 2007, BMC Bioinformatics.

[111]  Arne Elofsson,et al.  A study of the membrane-water interface region of membrane proteins. , 2005, Journal of molecular biology.

[112]  D. Baker,et al.  Multipass membrane protein structure prediction using Rosetta , 2005, Proteins.

[113]  Douglas J. Tobias,et al.  Arginine in Membranes: The Connection Between Molecular Dynamics Simulations and Translocon-Mediated Insertion Experiments , 2010, The Journal of Membrane Biology.

[114]  Doron Gerber,et al.  Specificity in Transmembrane Helix-Helix Interactions Mediated by Aromatic Residues* , 2007, Journal of Biological Chemistry.

[115]  D. Tobias,et al.  A voltage-sensor water pore. , 2006, Biophysical journal.

[116]  E. Lindahl,et al.  Amino-acid solvation structure in transmembrane helices from molecular dynamics simulations. , 2006, Biophysical journal.

[117]  István Simon,et al.  TOPDB: topology data bank of transmembrane proteins , 2007, Nucleic Acids Res..

[118]  David T. Jones Successful ab initio prediction of the tertiary structure of NK‐lysin using multiple sequences and recognized supersecondary structural motifs , 1997, Proteins.

[119]  Bosco K. Ho,et al.  HOLLOW: Generating Accurate Representations of Channel and Interior Surfaces in Molecular Structures , 2008, BMC Structural Biology.

[120]  Pierre Baldi,et al.  TMBpro: secondary structure, beta-contact and tertiary structure prediction of transmembrane beta-barrel proteins , 2008, Bioinform..

[121]  D. Engelman,et al.  Polar residues drive association of polyleucine transmembrane helices , 2001, Proceedings of the National Academy of Sciences of the United States of America.

[122]  Arne Elofsson,et al.  Why are polar residues within the membrane core evolutionary conserved? , 2011, Proteins.

[123]  Jie Liang,et al.  Prediction of transmembrane helix orientation in polytopic membrane proteins , 2006, BMC Structural Biology.

[124]  K. Schulten,et al.  Computational studies of membrane channels. , 2004, Structure.

[125]  Thomas Huber,et al.  G protein-coupled receptors self-assemble in dynamics simulations of model bilayers. , 2007, Journal of the American Chemical Society.

[126]  G. Voth,et al.  Gating of the mechanosensitive channel protein MscL: the interplay of membrane and protein. , 2008, Biophysical journal.

[127]  A. Krogh,et al.  Reliability measures for membrane protein topology prediction algorithms. , 2003, Journal of molecular biology.

[128]  Warren J. Gallin,et al.  VKCDB: voltage-gated K+ channel database updated and upgraded , 2010, Nucleic Acids Res..

[129]  G. von Heijne,et al.  Prediction of membrane-protein topology from first principles , 2008, Proceedings of the National Academy of Sciences.

[130]  Milton H. Saier,et al.  TCDB: the Transporter Classification Database for membrane transport protein analyses and information , 2005, Nucleic Acids Res..

[131]  Vikas Nanda,et al.  Are aromatic carbon donor hydrogen bonds linear in proteins? , 2007, Proteins.

[132]  Yizong Cheng,et al.  Computational Models for the Helix Tilt Angle , 2004, J. Chem. Inf. Model..

[133]  R. Nussinov,et al.  Sequence dependence of C-end rule peptides in binding and activation of neuropilin-1 receptor. , 2013, Journal of structural biology.

[134]  G. Heijne,et al.  Molecular code for transmembrane-helix recognition by the Sec61 translocon , 2007, Nature.

[135]  D. Frishman,et al.  Prediction of helix–helix contacts and interacting helices in polytopic membrane proteins using neural networks , 2009, Proteins.

[136]  David T. Jones,et al.  Predicting Transmembrane Helix Packing Arrangements using Residue Contacts and a Force-Directed Algorithm , 2010, PLoS Comput. Biol..

[137]  Oliver Beckstein,et al.  Lipidbook: A Public Repository for Force-Field Parameters Used in Membrane Simulations , 2010, The Journal of Membrane Biology.

[138]  B. Roux Exploring the ion selectivity properties of a large number of simplified binding site models. , 2010, Biophysical journal.

[139]  David T. Jones,et al.  Transmembrane protein topology prediction using support vector machines , 2009, BMC Bioinformatics.

[140]  Thomas C. Freeman,et al.  A highly accurate statistical approach for the prediction of transmembrane beta-barrels , 2010, Bioinform..

[141]  K. Diederichs,et al.  Structural Asymmetry of AcrB Trimer Suggests a Peristaltic Pump Mechanism , 2006, Science.

[142]  Arne Elofsson,et al.  OCTOPUS: improving topology prediction by two-track ANN-based preference scores and an extended topological grammar , 2008, Bioinform..

[143]  David T. Jones,et al.  Improving the accuracy of transmembrane protein topology prediction using evolutionary information , 2007, Bioinform..

[144]  Klaus Schulten,et al.  Molecular dynamics simulations of proteins in lipid bilayers. , 2005, Current opinion in structural biology.

[145]  H. Nymeyer,et al.  Indole localization in lipid membranes revealed by molecular simulation. , 2006, Biophysical journal.

[146]  M. Sansom,et al.  Coarse-grained simulation: a high-throughput computational approach to membrane proteins. , 2008, Biochemical Society transactions.

[147]  Zhengshuang Shi,et al.  Cation−π Interaction in Model α-Helical Peptides , 2002 .

[148]  D. Baker,et al.  Toward high-resolution prediction and design of transmembrane helical protein structures , 2007, Proceedings of the National Academy of Sciences.

[149]  Sebastien Petitdemange,et al.  Diffraction cartography: applying microbeams to macromolecular crystallography sample evaluation and data collection. , 2010, Acta crystallographica. Section D, Biological crystallography.

[150]  D. A. Dougherty,et al.  Cation-π Interactions in Chemistry and Biology: A New View of Benzene, Phe, Tyr, and Trp , 1996, Science.

[151]  Christian Blouin,et al.  Improved Helix and Kink Characterization in Membrane Proteins Allows Evaluation of Kink Sequence Predictors , 2010, J. Chem. Inf. Model..