Dynamic Factor Multivariate GARCH Model

A novel multivariate factor GARCH specification is used to obtain conditional covariance matrices of minimum variance portfolios containing a very large number of assets. The approach allows for time varying factor loads, and achieves great flexibility by allowing alternative specifications for the covariance among factors and for the variance of the asset-specific part of return. Minimum variance portfolios based on the proposed conditional covariance matrix specification are shown to deliver less risky portfolios in comparison to benchmark models, including existing factor approaches.

[1]  Christian Francq,et al.  QML ESTIMATION OF A CLASS OF MULTIVARIATE ASYMMETRIC GARCH MODELS , 2011, Econometric Theory.

[2]  Joseph P. Romano,et al.  The stationary bootstrap , 1994 .

[3]  Gergana Jostova,et al.  Bayesian Analysis of Stochastic Betas , 2005 .

[4]  L. Bauwens,et al.  Multivariate GARCH Models: A Survey , 2003 .

[5]  Ioannis D. Vrontos,et al.  A Full-Factor Multivariate GARCH Model , 2003 .

[6]  Piotr Kokoszka,et al.  GARCH processes: structure and estimation , 2003 .

[7]  Marc S. Paolella,et al.  Asymmetric multivariate normal mixture GARCH , 2009, Comput. Stat. Data Anal..

[9]  M. Rothschild,et al.  Asset Pricing with a Factor Arch Covariance Structure: Empirical Estimates for Treasury Bills , 1988 .

[10]  Riccardo Colacito,et al.  Testing and Valuing Dynamic Correlations for Asset Allocation , 2005 .

[11]  J. Zakoian,et al.  Maximum likelihood estimation of pure GARCH and ARMA-GARCH processes , 2004 .

[12]  R. Engle,et al.  Multivariate Simultaneous Generalized ARCH , 1995, Econometric Theory.

[13]  S. Chib,et al.  Multivariate stochastic volatility , 2009 .

[14]  Kevin Sheppard Multi-step estimation of Multivariate GARCH models , 2003 .

[15]  Daniel B. Nelson CONDITIONAL HETEROSKEDASTICITY IN ASSET RETURNS: A NEW APPROACH , 1991 .

[16]  Eric Ghysels,et al.  A Component Model for Dynamic Correlations , 2009 .

[17]  Richard A. Davis,et al.  Handbook of Financial Time Series , 2009 .

[18]  M. West,et al.  Bayesian Dynamic Factor Models and Portfolio Allocation , 2000 .

[19]  Roy van der Weide,et al.  GO-GARCH: a multivariate generalized orthogonal GARCH model , 2002 .

[20]  Victor DeMiguel,et al.  Optimal Versus Naive Diversification: How Inefficient is the 1/N Portfolio Strategy? , 2009 .

[21]  J. Zakoian Threshold heteroskedastic models , 1994 .

[22]  Yufeng Han,et al.  Asset Allocation with a High Dimensional Latent Factor Stochastic Volatility Model , 2005 .

[23]  N. Shephard,et al.  Multivariate stochastic variance models , 1994 .

[24]  J. Zakoian,et al.  A Tour in the Asymptotic Theory of GARCH Estimation , 2009 .

[25]  J. Wooldridge,et al.  Quasi-maximum likelihood estimation and inference in dynamic models with time-varying covariances , 1992 .

[26]  Timo Teräsvirta,et al.  Multivariate GARCH models To appear in T. G. Andersen, R. A. Davis, J.-P. Kreiss and T. Mikosch, eds. Handbook of Financial Time Series. New York: Springer. , 2008 .

[27]  Siem Jan Koopman,et al.  Time Series Analysis by State Space Methods , 2001 .

[28]  Eric Zivot,et al.  Practical Issues in the Analysis of Univariate GARCH Models , 2009 .

[29]  Paolo Zaffaroni,et al.  Pseudo-maximum likelihood estimation of ARCH(∞) models , 2005, math/0607798.

[30]  R. Jagannathan,et al.  Risk Reduction in Large Portfolios: Why Imposing the Wrong Constraints Helps , 2002 .

[31]  L. Glosten,et al.  On the Relation between the Expected Value and the Volatility of the Nominal Excess Return on Stocks , 1993 .

[32]  Joseph Chen,et al.  CAPM Over the Long-Run: 1926-2001 , 2003 .

[33]  Olivier Ledoit,et al.  Robust Performance Hypothesis Testing with the Sharpe Ratio , 2007 .

[34]  E. Fama,et al.  Common risk factors in the returns on stocks and bonds , 1993 .

[35]  T. Bollerslev,et al.  Generalized autoregressive conditional heteroskedasticity , 1986 .

[36]  Sheridan Titman,et al.  On Persistence in Mutual Fund Performance , 1997 .

[37]  Christian M. Hafner,et al.  On the estimation of dynamic conditional correlation models , 2012, Comput. Stat. Data Anal..

[38]  Christophe Croux,et al.  Robust M-Estimation of Multivariate GARCH models , 2010, Comput. Stat. Data Anal..

[39]  Michael W. Brandt,et al.  Variable Selection for Portfolio Choice , 2001 .

[40]  T. Adrian,et al.  Learning About Beta: Time-Varying Factor Loadings, Expected Returns, and the Conditional CAPM , 2008 .

[41]  Timo Terasvirta,et al.  Multivariate GARCH Models , 2008 .

[42]  Raman Uppal,et al.  A Generalized Approach to Portfolio Optimization: Improving Performance by Constraining Portfolio Norms , 2009, Manag. Sci..

[43]  A. P. Santos,et al.  Bond portfolio optimization: a dynamic heteroskedastic factor model approach , 2012 .

[44]  J. Wooldridge,et al.  A Capital Asset Pricing Model with Time-Varying Covariances , 1988, Journal of Political Economy.

[45]  R. Engle,et al.  Asymmetric Dynamics in the Correlations of Global Equity and Bond Returns , 2003, SSRN Electronic Journal.

[46]  C. Granger,et al.  A long memory property of stock market returns and a new model , 1993 .

[47]  Robert F. Engle,et al.  Stock Volatility and the Crash of '87: Discussion , 1990 .

[48]  S. Koopman,et al.  Exact Initial Kalman Filtering and Smoothing for Nonstationary Time Series Models , 1997 .