On Reshaping of Clustering Coefficients in Degree-Based Topology Generators

Recent work has shown that the Internet exhibits a power-law node degree distribution and high clustering. Considering that many existing degree-based Internet topology generators do not achieve this level of clustering, we propose a randomized algorithm that increases the clustering coefficients of graphs produced by these generators. Simulation results confirm that our algorithm makes the graphs produced by existing generators match clustering properties of the Internet topology.

[1]  Y. L. Maksoudian,et al.  Probability and statistics, with applications , 1969 .

[2]  Bruce A. Reed,et al.  A Critical Point for Random Graphs with a Given Degree Sequence , 1995, Random Struct. Algorithms.

[3]  Matthew Doar,et al.  A better model for generating test networks , 1996, Proceedings of GLOBECOM'96. 1996 IEEE Global Telecommunications Conference.

[4]  Kenneth L. Calvert,et al.  Modeling Internet topology , 1997, IEEE Commun. Mag..

[5]  Albert-László Barabási,et al.  Internet: Diameter of the World-Wide Web , 1999, Nature.

[6]  Reka Albert,et al.  Mean-field theory for scale-free random networks , 1999 .

[7]  Xerox,et al.  The Small World , 1999 .

[8]  Albert,et al.  Emergence of scaling in random networks , 1999, Science.

[9]  Michalis Faloutsos,et al.  On power-law relationships of the Internet topology , 1999, SIGCOMM '99.

[10]  Albert,et al.  Topology of evolving networks: local events and universality , 2000, Physical review letters.

[11]  Sugih Jamin,et al.  Inet: Internet Topology Generator , 2000 .

[12]  Fan Chung Graham,et al.  A random graph model for massive graphs , 2000, STOC '00.

[13]  Albert-László Barabási,et al.  Error and attack tolerance of complex networks , 2000, Nature.

[14]  A. Barabasi,et al.  Scale-free characteristics of random networks: the topology of the world-wide web , 2000 .

[15]  Paul Francis,et al.  IDMaps: a global internet host distance estimation service , 2001, TNET.

[16]  Fan Chung Graham,et al.  Random evolution in massive graphs , 2001, Proceedings 2001 IEEE International Conference on Cluster Computing.

[17]  Roger Wattenhofer,et al.  The impact of Internet policy and topology on delayed routing convergence , 2001, Proceedings IEEE INFOCOM 2001. Conference on Computer Communications. Twentieth Annual Joint Conference of the IEEE Computer and Communications Society (Cat. No.01CH37213).

[18]  Hawoong Jeong,et al.  Modeling the Internet's large-scale topology , 2001, Proceedings of the National Academy of Sciences of the United States of America.

[19]  A. Barabasi,et al.  Evolution of the social network of scientific collaborations , 2001, cond-mat/0104162.

[20]  Martin Suter,et al.  Small World , 2002 .

[21]  Donald F. Towsley,et al.  On distinguishing between Internet power law topology generators , 2002, Proceedings.Twenty-First Annual Joint Conference of the IEEE Computer and Communications Societies.

[22]  Walter Willinger,et al.  Towards capturing representative AS-level Internet topologies , 2002, SIGMETRICS '02.

[23]  Walter Willinger,et al.  The origin of power laws in Internet topologies revisited , 2002, Proceedings.Twenty-First Annual Joint Conference of the IEEE Computer and Communications Societies.

[24]  Christos H. Papadimitriou,et al.  On the Eigenvalue Power Law , 2002, RANDOM.

[25]  Hui Zhang,et al.  Predicting Internet network distance with coordinates-based approaches , 2002, Proceedings.Twenty-First Annual Joint Conference of the IEEE Computer and Communications Societies.

[26]  F. Chung,et al.  Connected Components in Random Graphs with Given Expected Degree Sequences , 2002 .

[27]  Fan Chung Graham,et al.  The Spectra of Random Graphs with Given Expected Degrees , 2004, Internet Math..

[28]  Albert-László Barabási,et al.  Hierarchical organization in complex networks. , 2003, Physical review. E, Statistical, nonlinear, and soft matter physics.

[29]  F. Chung,et al.  Spectra of random graphs with given expected degrees , 2003, Proceedings of the National Academy of Sciences of the United States of America.

[30]  Alan M. Frieze,et al.  Random graphs , 2006, SODA '06.