Hydrogen based emergency back-up system for telecommunication applications

[1]  HYDROGEN PROJECT AT MUNICH AIRPORT , 2004 .

[2]  J. Bockris,et al.  The origin of ideas on a Hydrogen Economy and its solution to the decay of the environment , 2002 .

[3]  S. G. Choi,et al.  Development of 1 kW class polymer electrolyte membrane fuel cell power generation system , 2002 .

[4]  Manfred Waidhas,et al.  Low-cost air-cooled PEFC stacks , 2002 .

[5]  Brian D. James,et al.  Cost and Performance Comparison Of Stationary Hydrogen Fueling Appliances , 2002 .

[6]  Mario Conte,et al.  Hydrogen economy for a sustainable development: state-of-the-art and technological perspectives , 2001 .

[7]  J. Graydon,et al.  Reactivation of nickel cathodes by dissolved vanadium species during hydrogen evolution in alkaline media , 2001 .

[8]  K. Agbossou,et al.  Renewable energy systems based on hydrogen for remote applications , 2001 .

[9]  C. F. Oliveira,et al.  The hydrogen evolution reaction on codeposited Ni–hydrogen storage intermetallic particles in alkaline medium , 2000 .

[10]  S. Trasatti,et al.  Ni+RuO2 co-deposited electrodes for hydrogen evolution , 2000 .

[11]  H. B. Suffredini,et al.  Recent developments in electrode materials for water electrolysis , 2000 .

[12]  W Smith,et al.  The role of fuel cells in energy storage , 2000 .

[13]  C. Marozzi,et al.  Development of electrode morphologies of interest in electrocatalysis. Part 1: Electrodeposited porous nickel electrodes , 2000 .

[14]  Weikang Hu Electrocatalytic properties of new electrocatalysts for hydrogen evolution in alkaline water electrolysis , 2000 .

[15]  R. E. Stoll,et al.  Hydrogen : what are the costs? : Plant utilities , 2000 .

[16]  Steffen Møller-Holst,et al.  PEMFC STACKS FOR POWER GENERATION , 1999 .

[17]  G. Scherer,et al.  PEM water electrolysers: evidence for membrane failure in 100kW demonstration plants , 1998 .

[18]  Gordon L. Nelson,et al.  Development of new proton exchange membrane electrolytes for water electrolysis at higher temperatures , 1998 .

[19]  H. Barthels,et al.  Phoebus-Jülich: An autonomous energy supply system comprising photovoltaics, electrolytic hydrogen, fuel cell , 1998 .

[20]  Keisuke Oguro,et al.  Polymer-electrolyte water electrolysis , 1998 .

[21]  Jai-Young Lee,et al.  Electrocatalytic properties of Ti2Ni/Ni-Mo composite electrodes for hydrogen evolution reaction , 1998 .

[22]  J. Vanhanen,et al.  Electrolyser-metal hydride-fuel cell system for seasonal energy storage , 1998 .

[23]  R. Crockett,et al.  Electrolyser-based energy management: a means for optimising the exploitation of variable renewable-energy resources in stand-alone applications , 1997 .

[24]  F. Barbir,et al.  Efficiency and economics of proton exchange membrane (PEM) fuel cells , 1997 .

[25]  Keith B. Prater,et al.  Solid polymer fuel cells for transport and stationary applications , 1996 .

[26]  L. Harvey,et al.  Solar-hydrogen electricity generation and global CO2 emission reduction , 1996 .

[27]  G. Eigenberger,et al.  Advanced alkaline electrolysis with porous polymeric diaphragms , 1996 .

[28]  Pierre Millet,et al.  Design and performance of a solid polymer electrolyte water electrolyzer , 1996 .

[29]  J. W. Hollenberg,et al.  Development of a photovoltaic energy conversion system with hydrogen energy storage , 1995 .