Efficient polynomial time algorithms computing industrial-strength primitive roots

E. Bach, following an idea of T. Itoh, has shown how to build a small set of numbers modulo a prime p such that at least one element of this set is a generator of Z/pZ. E. Bach suggests also that at least half of his set should be generators. We show here that a slight variant of this set can indeed be made to contain a ratio of primitive roots as close to 1 as necessary. In particular we present an asymptotically O˜(√1/elog(p)+log2(p)) algorithm providing primitive roots of p with probability of correctness greater than 1-e and several O(logα(p)), α≤5.23, algorithms computing "Industrial-strength" primitive roots.

[1]  E. T. An Introduction to the Theory of Numbers , 1946, Nature.

[2]  Gary L. Miller,et al.  Riemann's Hypothesis and tests for primality , 1975, STOC.

[3]  R. Gregory Taylor,et al.  Modern computer algebra , 2002, SIGA.

[4]  Eric Bach,et al.  How to Generate Factored Random Numbers , 1988, SIAM J. Comput..

[5]  James H. Davenport,et al.  Primality testing revisited , 1992, ISSAC '92.

[6]  J. Pollard A monte carlo method for factorization , 1975 .

[7]  James L. Walsh,et al.  Field testing for cosmic ray soft errors in semiconductor memories , 1996, IBM J. Res. Dev..

[8]  Thomas Müller,et al.  On the number of primitive λ-roots , 2004 .

[9]  N. Koblitz A Course in Number Theory and Cryptography , 1987 .

[10]  村田 玲音 On the Average of the Least Primitive Root Modulo $p$(Analytic Number Theory) , 1996 .

[11]  V. Shoup Searching for primitive roots in finite fields , 1990, Symposium on the Theory of Computing.

[12]  Igor E. Shparlinski,et al.  Period of the power generator and small values of Carmichael's function , 2001, Math. Comput..

[13]  Whitfield Diffie,et al.  New Directions in Cryptography , 1976, IEEE Trans. Inf. Theory.

[14]  Manuel Blum,et al.  How to generate cryptographically strong sequences of pseudo random bits , 1982, 23rd Annual Symposium on Foundations of Computer Science (sfcs 1982).

[15]  Vaughan R. Pratt,et al.  Every Prime has a Succinct Certificate , 1975, SIAM J. Comput..

[16]  Tommy Färnqvist Number Theory Meets Cache Locality – Efficient Implementation of a Small Prime FFT for the GNU Multiple Precision Arithmetic Library , 2005 .

[17]  Eric Bach Comments on search procedures for primitive roots , 1997, Math. Comput..

[18]  Igor E. Shparlinski,et al.  Corrigendum to: ``Period of the power generator and small values of Carmichael's function'' [Math. Comp. 70 (2001), no. 236, 1591--1605; MR1836921 (2002g:11112)] , 2002 .

[19]  C. Pomerance,et al.  Prime Numbers: A Computational Perspective , 2002 .

[20]  P. Erdos,et al.  Carmichael's lambda function , 1991 .

[21]  G. Robin Estimation de la fonction de Tchebychef θ sur le k-ième nombre premier et grandes valeurs de la fonction ω(n) nombre de diviseurs premiers de n , 1983 .

[22]  S. Wagstaff Cryptanalysis of Number Theoretic Ciphers , 2002 .

[23]  Igor E. Shparlinski,et al.  Constructing Elements of Large Order in Finite Fields , 1999, AAECC.

[24]  Igor E. Shparlinski,et al.  Smooth Orders and Cryptographic Applications , 2002, ANTS.

[25]  Igor E. Shparlinski,et al.  Orders of Gauss Periods in Finite Fields , 1995, ISAAC.