Efficient polynomial time algorithms computing industrial-strength primitive roots
暂无分享,去创建一个
[1] E. T.. An Introduction to the Theory of Numbers , 1946, Nature.
[2] Gary L. Miller,et al. Riemann's Hypothesis and tests for primality , 1975, STOC.
[3] R. Gregory Taylor,et al. Modern computer algebra , 2002, SIGA.
[4] Eric Bach,et al. How to Generate Factored Random Numbers , 1988, SIAM J. Comput..
[5] James H. Davenport,et al. Primality testing revisited , 1992, ISSAC '92.
[6] J. Pollard. A monte carlo method for factorization , 1975 .
[7] James L. Walsh,et al. Field testing for cosmic ray soft errors in semiconductor memories , 1996, IBM J. Res. Dev..
[8] Thomas Müller,et al. On the number of primitive λ-roots , 2004 .
[9] N. Koblitz. A Course in Number Theory and Cryptography , 1987 .
[10] 村田 玲音. On the Average of the Least Primitive Root Modulo $p$(Analytic Number Theory) , 1996 .
[11] V. Shoup. Searching for primitive roots in finite fields , 1990, Symposium on the Theory of Computing.
[12] Igor E. Shparlinski,et al. Period of the power generator and small values of Carmichael's function , 2001, Math. Comput..
[13] Whitfield Diffie,et al. New Directions in Cryptography , 1976, IEEE Trans. Inf. Theory.
[14] Manuel Blum,et al. How to generate cryptographically strong sequences of pseudo random bits , 1982, 23rd Annual Symposium on Foundations of Computer Science (sfcs 1982).
[15] Vaughan R. Pratt,et al. Every Prime has a Succinct Certificate , 1975, SIAM J. Comput..
[16] Tommy Färnqvist. Number Theory Meets Cache Locality – Efficient Implementation of a Small Prime FFT for the GNU Multiple Precision Arithmetic Library , 2005 .
[17] Eric Bach. Comments on search procedures for primitive roots , 1997, Math. Comput..
[18] Igor E. Shparlinski,et al. Corrigendum to: ``Period of the power generator and small values of Carmichael's function'' [Math. Comp. 70 (2001), no. 236, 1591--1605; MR1836921 (2002g:11112)] , 2002 .
[19] C. Pomerance,et al. Prime Numbers: A Computational Perspective , 2002 .
[20] P. Erdos,et al. Carmichael's lambda function , 1991 .
[21] G. Robin. Estimation de la fonction de Tchebychef θ sur le k-ième nombre premier et grandes valeurs de la fonction ω(n) nombre de diviseurs premiers de n , 1983 .
[22] S. Wagstaff. Cryptanalysis of Number Theoretic Ciphers , 2002 .
[23] Igor E. Shparlinski,et al. Constructing Elements of Large Order in Finite Fields , 1999, AAECC.
[24] Igor E. Shparlinski,et al. Smooth Orders and Cryptographic Applications , 2002, ANTS.
[25] Igor E. Shparlinski,et al. Orders of Gauss Periods in Finite Fields , 1995, ISAAC.