On Mutual Relations amongst Evolutionary Algorithm Dynamics and Its Hidden Complex Network Structures: An Overview and Recent Advances

In this chapter, we do synthesis of three partially different areas of research: complex networks, evolutionary computation and deterministic chaos. Ideas, results and methodologies reported and mentioned here are based on our previous results and experiments. We report here our latest results as well as propositions on further research that is in process in our group (http://navy.cs.vsb.cz/). In order to understand what is the main idea, lets first discuss an overview of the two main areas: complex networks and evolutionary algorithms.

[1]  M. Broom,et al.  Two results on evolutionary processes on general non-directed graphs , 2010, Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[2]  Hendrik Richter An Evolutionary Algorithm for Controlling Chaos: The Use of Multi-objective Fitness Functions , 2002, PPSN.

[3]  G. Szabó,et al.  Evolutionary games on graphs , 2006, cond-mat/0607344.

[4]  Ivan Zelinka,et al.  Evolutionary Algorithms and Chaotic Systems , 2010, Evolutionary Algorithms and Chaotic Systems.

[5]  Nikolay V. Kuznetsov,et al.  Analytical-Numerical Localization of Hidden Attractor in Electrical Chua’s Circuit , 2013 .

[6]  Stefan Bornholdt,et al.  Handbook of Graphs and Networks: From the Genome to the Internet , 2003 .

[7]  Ingo Rechenberg,et al.  Evolutionsstrategie : Optimierung technischer Systeme nach Prinzipien der biologischen Evolution , 1973 .

[8]  Jean-Philippe Rennard,et al.  Handbook of Research on Nature-inspired Computing for Economics and Management , 2006 .

[9]  Reza Olfati-Saber,et al.  Evolutionary dynamics of behavior in social networks , 2007, 2007 46th IEEE Conference on Decision and Control.

[10]  Hendrik Richter,et al.  A study of dynamic severity in chaotic fitness landscapes , 2005, 2005 IEEE Congress on Evolutionary Computation.

[11]  Heinz G. Schuster,et al.  Handbook of Chaos Control: SCHUSTER:HDBK.CHAOS CONTR O-BK , 1999 .

[12]  Michal Pluhacek,et al.  Evolutionary algorithms dynamics and its hidden complex network structures , 2014, 2014 IEEE Congress on Evolutionary Computation (CEC).

[13]  Yang Xin-She マルチモーダル最適化のためのFireflyアルゴリズム | 文献情報 | J-GLOBAL 科学技術総合リンクセンター , 2009 .

[14]  Xin-She Yang,et al.  Cuckoo Search via Lévy flights , 2009, 2009 World Congress on Nature & Biologically Inspired Computing (NaBIC).

[15]  Nikolay V. Kuznetsov,et al.  Hidden attractors in Dynamical Systems. From Hidden oscillations in Hilbert-Kolmogorov, Aizerman, and Kalman Problems to Hidden Chaotic Attractor in Chua Circuits , 2013, Int. J. Bifurc. Chaos.

[16]  Ivan Zelinka IWCFTA2012 Keynote Speech III - On Close Relations of Evolutionary Dynamics, Chaos and Complexity , 2012 .

[17]  Xin-She Yang,et al.  A New Metaheuristic Bat-Inspired Algorithm , 2010, NICSO.

[18]  Kay Chen Tan,et al.  Multi-Objective Memetic Algorithms , 2009 .

[19]  Ivan Zelinka,et al.  SOMA—Self-organizing Migrating Algorithm , 2016 .

[20]  Michal Pluhacek,et al.  Hidden Complexity of Evolutionary Dynamics: Analysis , 2014 .

[21]  Zahra Rahmani Cherati,et al.  Control of spatiotemporal chaos in coupled map lattice by discrete-time variable structure control , 2007 .

[22]  Ivan Zelinka,et al.  Real-time deterministic chaos control by means of selected evolutionary techniques , 2009, Eng. Appl. Artif. Intell..

[23]  Wenxin Liu,et al.  Particle swarm optimization-based parameter identification applied to permanent magnet synchronous motors , 2008, Eng. Appl. Artif. Intell..

[24]  Hendrik Richter,et al.  Optimization of local control of chaos by an evolutionary algorithm , 2000 .

[25]  Roman Senkerik,et al.  Do Evolutionary Algorithm Dynamics Create Complex Network Structures? , 2011, Complex Syst..

[26]  Mahdi Niamanesh,et al.  Hengam a MapReduce-Based Distributed Data Warehouse for Big Data: A MapReduce-Based Distributed Data Warehouse for Big Data , 2018, Int. J. Artif. Life Res..

[27]  Nikolay V. Kuznetsov,et al.  Algorithms for finding hidden oscillations in nonlinear systems. The Aizerman and Kalman conjectures and Chua’s circuits , 2011 .

[28]  Manoj Kumar Tiwari,et al.  Improved and generalized learning strategies for dynamically fast and statistically robust evolutionary algorithms , 2008, Eng. Appl. Artif. Intell..

[29]  S. N. Dorogovtsev,et al.  Evolution of networks , 2001, cond-mat/0106144.

[30]  Ivan Zelinka,et al.  Chaos Synthesis by Means of Evolutionary Algorithms , 2008, Int. J. Bifurc. Chaos.

[31]  Martin A. Nowak,et al.  Evolutionary dynamics on graphs , 2005, Nature.

[32]  G. Leonov,et al.  Hidden oscillations in dynamical systems , 2011 .

[33]  David B. Fogel,et al.  Unearthing a Fossil from the History of Evolutionary Computation , 1998, Fundam. Informaticae.

[34]  B. R. Andrievskii,et al.  Aircraft control with anti-windup compensation , 2012 .

[35]  Hendrik Richter,et al.  Evolutionary Optimization in Spatio-temporal Fitness Landscapes , 2006, PPSN.

[36]  V. Latora,et al.  Complex networks: Structure and dynamics , 2006 .

[37]  Roman Senkerik,et al.  Preliminary investigation on relations between complex networks and evolutionary algorithms dynamics , 2010, 2010 International Conference on Computer Information Systems and Industrial Management Applications (CISIM).

[38]  Maarten van Steen,et al.  Graph Theory and Complex Networks: An Introduction , 2010 .

[39]  Xin-She Yang,et al.  Firefly Algorithms for Multimodal Optimization , 2009, SAGA.

[40]  David J. Hill,et al.  When Structure Meets Function in Evolutionary Dynamics on Complex Networks , 2014, IEEE Circuits and Systems Magazine.