Conditions for Optimal Efficiency of Relative MDS

In this paper, the relative multidimensional scaling method is investigated. This method is designated to visualize large multidimensional data. The method encompasses application of multidimensional scaling (MDS) to the so-called basic vector set and further mapping of the remaining vectors from the analyzed data set. In the original algorithm of relative MDS, the visualization process is divided into three steps: the set of basis vectors is constructed using the k-means clustering method; this set is projected onto the plane using the MDS algorithm; the set of remaining data is visualized using the relative mapping algorithm. We propose a modification, which differs from the original algorithm in the strategy of selecting the basis vectors. The experimental investigation has shown that the modification exceeds the original algorithm in the visualization quality and computational expenses. The conditions, where the relative MDS efficiency exceeds that of standard MDS, are estimated.

[1]  Gintautas Dzemyda,et al.  Heuristic approach for minimizing the projection error in the integrated mapping , 2006, Eur. J. Oper. Res..

[2]  David J. Hand,et al.  Intelligent Data Analysis, An Introduction, 2nd editon , 2003 .

[3]  A. Naud,et al.  Visualization of high-dimensional data using an association of multidimensional scaling to clustering , 2004, IEEE Conference on Cybernetics and Intelligent Systems, 2004..

[4]  Georges G. Grinstein,et al.  A survey of visualizations for high-dimensional data mining , 2001 .

[5]  Patrick J. F. Groenen,et al.  Modern Multidimensional Scaling: Theory and Applications , 2003 .

[6]  Antoine Naud INTERACTIVE DATA EXPLORATION USING MDS MAPPING , 2000 .

[7]  O. Mangasarian,et al.  Robust linear programming discrimination of two linearly inseparable sets , 1992 .

[8]  Gintautas Dzemyda,et al.  Optimal decisions in combining the SOM with nonlinear projection methods , 2006, Eur. J. Oper. Res..

[9]  Jussi Myllymaki,et al.  Visual exploration of large data sets , 1996, Electronic Imaging.

[10]  Gintautas Dzemyda,et al.  STRATEGIES OF SELECTING THE BASIS VECTOR SET IN THE RELATIVE MDS , 2006 .

[11]  R. Mathar,et al.  On global optimization in two-dimensional scaling , 1993 .

[12]  Ivo A. van der Lans,et al.  Multidimensional Scaling with Regional Restrictions for Facet Theory: An Application to Levi's Political Protest Data , 2006 .

[13]  Teuvo Kohonen,et al.  Self-Organizing Maps , 2010 .

[14]  Antoine Naud An Accurate MDS-Based Algorithm for the Visualization of Large Multidimensional Datasets , 2006, ICAISC.

[15]  W. J. Langford Statistical Methods , 1959, Nature.

[16]  Martin Charlton,et al.  An Investigation of Methods for Visualising Highly Multivariate Datasets , 1998 .

[17]  Margaret H. Dunham,et al.  Data Mining: Introductory and Advanced Topics , 2002 .

[18]  Michael E. Tipping Topographic mappings and feed-forward neural networks , 1996 .

[19]  Wojciech Basalaj,et al.  Incremental multidimensional scaling method for database visualization , 1999, Electronic Imaging.

[20]  P. Groenen,et al.  Modern Multidimensional Scaling: Theory and Applications , 1999 .

[21]  Catherine Blake,et al.  UCI Repository of machine learning databases , 1998 .

[22]  Anil K. Jain,et al.  Artificial neural networks for feature extraction and multivariate data projection , 1995, IEEE Trans. Neural Networks.

[23]  Gintautas Dzemyda,et al.  Comparative Analysis of the Graphical Result Presentation in the SOM Software , 2002, Informatica.