Interaction of guanidinium and ammonium cations with phosphatidylcholine and phosphatidylserine lipid bilayers - Calorimetric, spectroscopic and molecular dynamics simulations study.

[1]  Ina Erceg,et al.  Influence of DPPE surface undulations on melting temperature determination: UV/Vis spectroscopic and MD study. , 2022, Biochimica et biophysica acta. Biomembranes.

[2]  M. Hof,et al.  Ionic Strength and Solution Composition Dictate the Adsorption of Cell-Penetrating Peptides onto Phosphatidylcholine Membranes , 2022, Langmuir : the ACS journal of surfaces and colloids.

[3]  D. Jurašin,et al.  Deciphering the origin of the melting profile of unilamellar phosphatidylcholine liposomes by measuring the turbidity of its suspensions. , 2022, Soft matter.

[4]  Y. Tao,et al.  The role of cell‐penetrating peptides in potential anti‐cancer therapy , 2022, Clinical and translational medicine.

[5]  Z. Bánóczi,et al.  Redesigning of Cell-Penetrating Peptides to Improve Their Efficacy as a Drug Delivery System , 2022, Pharmaceutics.

[6]  Darija Domazet Jurašin,et al.  New spirit of an old technique: Characterization of lipid phase transitions via UV/Vis spectroscopy. , 2022, Spectrochimica acta. Part A, Molecular and biomolecular spectroscopy.

[7]  Jung-Hwan Kwon,et al.  Liposome leakage and increased cellular permeability induced by guanidine-based oligomers: effects of liposome composition on liposome leakage and human lung epithelial barrier permeability , 2021, RSC advances.

[8]  R. Marotta,et al.  Specific and nondisruptive interaction of guanidium-functionalized gold nanoparticles with neutral phospholipid bilayers , 2021, Communications Chemistry.

[9]  W. M. Hussein,et al.  Cell-Penetrating Peptides-Based Liposomal Delivery System Enhanced Immunogenicity of Peptide-Based Vaccine against Group A Streptococcus , 2021, Vaccines.

[10]  L. Bakas,et al.  Interaction of cationic surfactants with DPPC membranes: effect of a novel Nα-benzoylated arginine-based compound , 2021, Amino Acids.

[11]  J. Heyda,et al.  Computation and volumetric insight into (p,T) effect on aqueous guanidinium chloride , 2021, The Journal of Chemical Thermodynamics.

[12]  I. Crnolatac,et al.  Application of MCR-ALS with EFA on FT-IR spectra of lipid bilayers in the assessment of phase transition temperatures: Potential for discernment of coupled events. , 2021, Colloids and surfaces. B, Biointerfaces.

[13]  C. Marques,et al.  Ripple-like instability in the simulated gel phase of finite size phosphocholine bilayers. , 2021, Biochimica et biophysica acta. Biomembranes.

[14]  S. Matysiak,et al.  Microscopic Picture of Calcium-Assisted Lipid Demixing and Membrane Remodeling Using Multiscale Simulations. , 2020, The journal of physical chemistry. B.

[15]  S. Hayakawa,et al.  Molecular dynamics study of lipid bilayers modeling outer and inner leaflets of plasma membranes of mouse hepatocytes. I. Differences in physicochemical properties between the two leaflets. , 2020, The Journal of chemical physics.

[16]  Jung-Hwan Kwon,et al.  Effects of lipid membrane composition on the distribution of biocidal guanidine oligomer with solid supported lipid membranes , 2020, RSC advances.

[17]  Robert J. Lee,et al.  Cell-Penetrating Peptides in Diagnosis and Treatment of Human Diseases: From Preclinical Research to Clinical Application , 2020, Frontiers in Pharmacology.

[18]  S. Futaki,et al.  An artificial amphiphilic peptide promotes endocytic uptake by inducing membrane curvature. , 2020, Bioconjugate chemistry.

[19]  S. Roy,et al.  Selective Antibacterial Activity and Lipid Membrane Interactions of Arginine-Rich Amphiphilic Peptides , 2020, ACS applied bio materials.

[20]  A. Zimmer,et al.  Internalization mechanisms of cell-penetrating peptides , 2020, Beilstein journal of nanotechnology.

[21]  W. Thompson,et al.  On the temperature dependence of liquid structure. , 2020, The Journal of chemical physics.

[22]  Marcel Maeder,et al.  Two-Way Data Analysis: Evolving Factor Analysis , 2020, Comprehensive Chemometrics.

[23]  Mohamed Nilam,et al.  Supramolecular Chemistry in the Biomembrane , 2019, Chembiochem : a European journal of chemical biology.

[24]  Grazielle Oliveira,et al.  Solubility Measurement of Lauric, Palmitic, and Stearic Acids in Ethanol, n-Propanol, and 2-Propanol Using Differential Scanning Calorimetry , 2019, Journal of Chemical & Engineering Data.

[25]  K. Numata,et al.  Screening of a Cell-Penetrating Peptide Library in Escherichia coli: Relationship between Cell Penetration Efficiency and Cytotoxicity , 2018, ACS Omega.

[26]  P. Jurkiewicz,et al.  Arginine-rich cell-penetrating peptides induce membrane multilamellarity and subsequently enter via formation of a fusion pore , 2018, Proceedings of the National Academy of Sciences.

[27]  P. Jurkiewicz,et al.  Membrane Lipid Nanodomains. , 2018, Chemical reviews.

[28]  Jeffery B. Klauda,et al.  Investigation of phase transitions of saturated phosphocholine lipid bilayers via molecular dynamics simulations. , 2018, Biochimica et biophysica acta. Biomembranes.

[29]  J. Heyda,et al.  Arginine "Magic": Guanidinium Like-Charge Ion Pairing from Aqueous Salts to Cell Penetrating Peptides. , 2018, Accounts of chemical research.

[30]  S. Jalili,et al.  Salt-induced effects on natural and inverse DPPC lipid membranes: Molecular dynamics simulation. , 2018, Biophysical chemistry.

[31]  J. Kolafa,et al.  Accurate Binding of Sodium and Calcium to a POPC Bilayer by Effective Inclusion of Electronic Polarization. , 2018, The journal of physical chemistry. B.

[32]  J. Heyda,et al.  Self-association of a highly charged arginine-rich cell-penetrating peptide , 2017, Proceedings of the National Academy of Sciences.

[33]  Callum J. Dickson,et al.  Contributions of the membrane dipole potential to the function of voltage-gated cation channels and modulation by small molecule potentiators. , 2017, Biochimica et biophysica acta. Biomembranes.

[34]  B. L. de Groot,et al.  CHARMM36m: an improved force field for folded and intrinsically disordered proteins , 2016, Nature Methods.

[35]  S. Futaki,et al.  Current Understanding of Direct Translocation of Arginine-Rich Cell-Penetrating Peptides and Its Internalization Mechanisms. , 2016, Chemical & pharmaceutical bulletin.

[36]  M. Naito,et al.  Development of a Cell-penetrating Peptide that Exhibits Responsive Changes in its Secondary Structure in the Cellular Environment , 2016, Scientific Reports.

[37]  P. Cremer,et al.  Polyarginine Interacts More Strongly and Cooperatively than Polylysine with Phospholipid Bilayers. , 2016, The journal of physical chemistry. B.

[38]  Berk Hess,et al.  GROMACS: High performance molecular simulations through multi-level parallelism from laptops to supercomputers , 2015 .

[39]  L. Chernomordik,et al.  Efficient entry of cell-penetrating peptide nona-arginine into adherent cells involves a transient increase in intracellular calcium , 2015, The Biochemical journal.

[40]  R. Brock,et al.  Multivalent presentation of the cell-penetrating peptide nona-arginine on a linear scaffold strongly increases its membrane-perturbing capacity. , 2014, Biochimica et biophysica acta.

[41]  Sunhwan Jo,et al.  CHARMM‐GUI Membrane Builder toward realistic biological membrane simulations , 2014, J. Comput. Chem..

[42]  Romà Tauler,et al.  Multivariate Curve Resolution (MCR). Solving the mixture analysis problem , 2014 .

[43]  Toby W Allen,et al.  Ion-induced defect permeation of lipid membranes. , 2014, Biophysical journal.

[44]  R. McElhaney,et al.  Membrane lipid phase transitions and phase organization studied by Fourier transform infrared spectroscopy. , 2013, Biochimica et biophysica acta.

[45]  I. Vorobyov,et al.  The different interactions of lysine and arginine side chains with lipid membranes. , 2013, The journal of physical chemistry. B.

[46]  M. Yasui,et al.  Dynamic interactions of cations, water and lipids and influence on membrane fluidity , 2013 .

[47]  I. Alves,et al.  Membrane interactions of two arginine-rich peptides with different cell internalization capacities. , 2012, Biochimica et biophysica acta.

[48]  Motomu Tanaka,et al.  First order melting transitions of highly ordered dipalmitoyl phosphatidylcholine gel phase membranes in molecular dynamics simulations with atomistic detail. , 2011, The Journal of chemical physics.

[49]  J. Conboy,et al.  Electrostatic induction of lipid asymmetry. , 2011, Journal of the American Chemical Society.

[50]  Dandan Han,et al.  An overview of liposome lyophilization and its future potential. , 2010, Journal of controlled release : official journal of the Controlled Release Society.

[51]  E. Disalvo,et al.  Role of guanidinium group in the insertion of l-arginine in DMPE and DMPC lipid interphases. , 2010, Biochimica et biophysica acta.

[52]  R. D. Porasso,et al.  Study of the effect of Na+ and Ca2+ ion concentration on the structure of an asymmetric DPPC/DPPC + DPPS lipid bilayer by molecular dynamics simulation. , 2009, Colloids and surfaces. B, Biointerfaces.

[53]  A. Blume,et al.  Interaction of poly(L-arginine) with negatively charged DPPG membranes: calorimetric and monolayer studies. , 2009, Biomacromolecules.

[54]  M. Karttunen,et al.  Water isotope effect on the phosphatidylcholine bilayer properties: a molecular dynamics simulation study. , 2009, The journal of physical chemistry. B.

[55]  B. Desbat,et al.  Aggregation of cateslytin beta-sheets on negatively charged lipids promotes rigid membrane domains. A new mode of action for antimicrobial peptides? , 2008, Biochemistry.

[56]  I. Vattulainen,et al.  Effect of NaCl and KCl on phosphatidylcholine and phosphatidylethanolamine lipid membranes: insight from atomic-scale simulations for understanding salt-induced effects in the plasma membrane. , 2008, The journal of physical chemistry. B.

[57]  A. Sum,et al.  Molecular studies of the gel to liquid-crystalline phase transition for fully hydrated DPPC and DPPE bilayers. , 2007, Biochimica et biophysica acta.

[58]  R. McElhaney,et al.  Differential Scanning Calorimetry in the Study of Lipid Phase Transitions in Model and Biological Membranes , 2007 .

[59]  Romà Tauler,et al.  A graphical user-friendly interface for MCR-ALS: a new tool for multivariate curve resolution in MATLAB , 2005 .

[60]  M. Infante,et al.  Interaction of antimicrobial arginine-based cationic surfactants with liposomes and lipid monolayers. , 2004, Langmuir : the ACS journal of surfaces and colloids.

[61]  Juan J de Pablo,et al.  Molecular simulation study of phospholipid bilayers and insights of the interactions with disaccharides. , 2003, Biophysical journal.

[62]  Helmut Grubmüller,et al.  Effect of sodium chloride on a lipid bilayer. , 2003, Biophysical journal.

[63]  Sagar A. Pandit,et al.  Molecular dynamics simulation of dipalmitoylphosphatidylserine bilayer with Na+ counterions. , 2002, Biophysical journal.

[64]  J. Rothbard,et al.  Polyarginine enters cells more efficiently than other polycationic homopolymers. , 2000, The journal of peptide research : official journal of the American Peptide Society.

[65]  R. Lewis,et al.  Calorimetric and spectroscopic studies of the thermotropic phase behavior of lipid bilayer model membranes composed of a homologous series of linear saturated phosphatidylserines. , 2000, Biophysical journal.

[66]  M. Caffrey,et al.  Phases and phase transitions of the phosphatidylcholines. , 1998, Biochimica et biophysica acta.

[67]  O. Berger,et al.  Molecular dynamics simulations of a fluid bilayer of dipalmitoylphosphatidylcholine at full hydration, constant pressure, and constant temperature. , 1997, Biophysical journal.

[68]  H. Berendsen,et al.  Molecular dynamics simulation of a charged biological membrane , 1996 .

[69]  T. Darden,et al.  A smooth particle mesh Ewald method , 1995 .

[70]  J. Gomez-Fernandez,et al.  Effect of sphingosine and stearylamine on the interaction of phosphatidylserine with calcium. A study using DSC, FT-IR and 45Ca(2+)-binding. , 1995, Biochimica et biophysica acta.

[71]  H. Mantsch,et al.  Components of the carbonyl stretching band in the infrared spectra of hydrated 1,2-diacylglycerolipid bilayers: a reevaluation. , 1994, Biophysical journal.

[72]  H. R. Keller,et al.  Evolving factor analysis , 1991 .

[73]  Günther W. H. Höhne,et al.  The temperature calibration of scanning calorimeters , 1990 .

[74]  S. Nosé A molecular dynamics method for simulations in the canonical ensemble , 1984 .

[75]  W. L. Jorgensen,et al.  Comparison of simple potential functions for simulating liquid water , 1983 .

[76]  H. Hauser,et al.  Structure and thermotropic behavior of phosphatidylserine bilayer membranes. , 1982, Biochemistry.

[77]  M. Parrinello,et al.  Polymorphic transitions in single crystals: A new molecular dynamics method , 1981 .

[78]  A. Watts,et al.  Titration of the phase transition of phosphatidylserine bilayer membranes. Effects of pH, surface electrostatics, ion binding, and head-group hydration. , 1981, Biochemistry.