Fatigue reassessment for lifetime extension of offshore wind monopile substructures

Fatigue reassessment is required to decide about lifetime extension of aging offshore wind farms. This paper presents a methodology to identify important parameters to monitor during the operational phase of offshore wind turbines. An elementary effects method is applied to analyze the global sensitivity of residual fatigue lifetimes to environmental, structural and operational parameters. Therefore, renewed lifetime simulations are performed for a case study which consists of a 5 MW turbine with monopile substructure in 20 m water depth. Results show that corrosion, turbine availability, and turbulence intensity are the most influential parameters. This can vary strongly for other settings (water depth, turbine size, etc.) making case-specific assessments necessary.

[1]  I. Pineda,et al.  The European offshore wind industry: key trends and statistics 2016 , 2017 .

[2]  R. E. Bredesen,et al.  Long-term correction of wind measurements. State-of-the-art, guidelines and future work. , 2013 .

[3]  J. van der Tempel,et al.  Design of support structures for offshore wind turbines , 2006 .

[4]  E. S. Politis,et al.  Modelling and Measuring Flow and Wind Turbine Wakes in Large Wind Farms Offshore , 2009, Renewable Energy.

[5]  Feargal Brennan,et al.  Fatigue design of offshore steel mono-pile wind substructures , 2014 .

[6]  A. Black,et al.  Corrosion Protection of Offshore Wind Foundations , 2015 .

[7]  Athanasios Kolios,et al.  Failure Mode Identification and End of Life Scenarios of Offshore Wind Turbines: A Review , 2015 .

[8]  C. A. Huber,et al.  Support structure for wind turbines and mold for such structures , 2012 .

[9]  Yanhui Feng,et al.  Early experiences with UK round 1 offshore wind farms , 2010 .

[10]  Knut O. Ronold,et al.  Background for Revision of DNVGL-RP-C203 Fatigue Design of Offshore Steel Structures in 2016 , 2016 .

[11]  Tim Rubert,et al.  Lifetime extension of onshore wind turbines: A review covering Germany, Spain, Denmark, and the UK , 2018 .

[12]  Michael Muskulus,et al.  Design clustering of offshore wind turbines using probabilistic fatigue load estimation , 2016 .

[13]  Cord Böker,et al.  Offshore Code Comparison Collaboration within IEA Wind Annex XXIII: Phase III Results Regarding Tripod Support Structure Modeling , 2009 .

[14]  Max D. Morris,et al.  Factorial sampling plans for preliminary computational experiments , 1991 .

[15]  J. Peinke,et al.  The Science of Making Torque from Wind (TORQUE 2016) , 2014 .

[16]  B. Schmidt,et al.  Upwind design basis (WP4: offshore foundations and support structures) , 2010 .

[17]  Michael Muskulus,et al.  Sensitivity of Wave Fatigue Loads on Offshore Wind Turbines under Varying Site Conditions , 2015 .

[18]  Saltelli Andrea,et al.  Global Sensitivity Analysis: The Primer , 2008 .

[19]  Dan Kallehave,et al.  Optimization of monopiles for offshore wind turbines , 2015, Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[20]  Christof Devriendt,et al.  Experimental and computational damping estimation of an offshore wind turbine on a monopile foundation , 2013 .