Generating SPARQL queries using templates

The search for information on the Web of Data is becoming increasingly difficult due to its considerable growth. Especially novice users need to acquire both knowledge about the underlying ontology structure and proficiency in formulating formal queries e.g. SPARQL queries to retrieve information from Linked Data sources. So as to simplify and automate the querying and retrieval of information from such sources, this paper presents an approach for constructing SPARQL queries based on user-supplied keywords. Our approach utilizes a set of predefined basic graph pattern templates for generating adequate interpretations of user queries. This is achieved by obtaining ranked lists of candidate resource identifiers for the supplied keywords and then injecting these identifiers into suitable positions in the graph pattern templates. The main advantages of our approach are that it is completely agnostic of the underlying knowledge base and ontology schema, that it scales to large knowledge bases and is simple to use. We evaluate all 17 possible valid graph pattern templates by measuring their precision and recall on 53 queries against DBpedia. Our results show that 8 of these basic graph pattern templates return results with a precision above 70%. Our approach is implemented as a Web search interface and performs sufficiently fast to provide answers within an acceptable time frame even when used on large knowledge bases.

[1]  Atanas Kiryakov,et al.  KIM – a semantic platform for information extraction and retrieval , 2004, Natural Language Engineering.

[2]  Timothy W. Finin,et al.  Swoogle: a search and metadata engine for the semantic web , 2004, CIKM '04.

[3]  D. Gerber,et al.  Bootstrapping the Linked Data Web , 2011 .

[4]  Jens Lehmann,et al.  DBpedia - A crystallization point for the Web of Data , 2009, J. Web Semant..

[5]  Enrico Motta,et al.  AquaLog: An ontology-driven question answering system for organizational semantic intranets , 2007, J. Web Semant..

[6]  Enrico Motta,et al.  Integration of micro-gravity and geodetic data to constrain shallow system mass changes at Krafla Volcano, N Iceland , 2006 .

[7]  Jürgen Umbrich,et al.  Searching and browsing Linked Data with SWSE: The Semantic Web Search Engine , 2011, J. Web Semant..

[8]  Sören Auer,et al.  LIMES - A Time-Efficient Approach for Large-Scale Link Discovery on the Web of Data , 2011, IJCAI.

[9]  Yi Chen,et al.  Reasoning and identifying relevant matches for XML keyword search , 2008, Proc. VLDB Endow..

[10]  Lora Aroyo,et al.  Semantic annotation and search of cultural-heritage collections: The MultimediaN E-Culture demonstrator , 2008, J. Web Semant..

[11]  Axel-Cyrille Ngonga Ngomo,et al.  EAGLE: Efficient Active Learning of Link Specifications Using Genetic Programming , 2012, ESWC.

[12]  Stefan Decker,et al.  Sig.ma: live views on the web of data , 2010, WWW '10.

[13]  Jens Lehmann,et al.  Template-based question answering over RDF data , 2012, WWW.

[14]  Axel-Cyrille Ngonga Ngomo,et al.  Extracting Multilingual Natural-Language Patterns for RDF Predicates , 2012, EKAW.

[15]  Philipp Cimiano,et al.  Pythia: Compositional Meaning Construction for Ontology-Based Question Answering on the Semantic Web , 2011, NLDB.

[16]  Stavros Christodoulakis,et al.  The OntoNL Framework for Natural Language Interface Generation and a Domain-Specific Application , 2007, DELOS.

[17]  Xiaotao Huang,et al.  A Relation-Based Search Engine in Semantic Web , 2007, IEEE Transactions on Knowledge and Data Engineering.

[18]  Hai Jin,et al.  Practical and effective IR-style keyword search over semantic web , 2009, Inf. Process. Manag..

[19]  Yannis Papakonstantinou,et al.  Supporting top-K keyword search in XML databases , 2010, 2010 IEEE 26th International Conference on Data Engineering (ICDE 2010).

[20]  Atanas Kiryakov,et al.  KIM - Semantic Annotation Platform , 2003, SEMWEB.

[21]  Ophir Frieder,et al.  On understanding and classifying web queries , 2006 .

[22]  Haofen Wang,et al.  Top-k Exploration of Query Candidates for Efficient Keyword Search on Graph-Shaped (RDF) Data , 2009, 2009 IEEE 25th International Conference on Data Engineering.

[23]  S. Sudarshan,et al.  Bidirectional Expansion For Keyword Search on Graph Databases , 2005, VLDB.

[24]  Stefan Decker,et al.  Sig.ma: Live views on the Web of Data , 2010, J. Web Semant..

[25]  Surajit Chaudhuri,et al.  DBXplorer: a system for keyword-based search over relational databases , 2002, Proceedings 18th International Conference on Data Engineering.

[26]  S. Sudarshan,et al.  Keyword searching and browsing in databases using BANKS , 2002, Proceedings 18th International Conference on Data Engineering.

[27]  Lin Guo XRANK : Ranked Keyword Search over XML Documents , 2003 .

[28]  Ramanathan V. Guha,et al.  Semantic search , 2003, WWW '03.

[29]  Enrico Motta,et al.  Toward a New Generation of Semantic Web Applications , 2008, IEEE Intelligent Systems.

[30]  Yuzhong Qu,et al.  Searching Linked Objects with Falcons: Approach, Implementation and Evaluation , 2009, Int. J. Semantic Web Inf. Syst..

[31]  Wolfgang Nejdl,et al.  From keywords to semantic queries - Incremental query construction on the semantic web , 2009, J. Web Semant..

[32]  Fabio Crestani,et al.  Application of Spreading Activation Techniques in Information Retrieval , 1997, Artificial Intelligence Review.

[33]  Peter Haase,et al.  Usability of Keyword-Driven Schema-Agnostic Search , 2010, ESWC.

[34]  Daniel Schwabe,et al.  A hybrid approach for searching in the semantic web , 2004, WWW '04.

[35]  Eero Hyvönen,et al.  Fuzzy View-Based Semantic Search , 2006, ASWC.

[36]  Jens Lehmann,et al.  Introduction to Linked Data and Its Lifecycle on the Web , 2013, Reasoning Web.

[37]  Yun Peng,et al.  Swoogle: A semantic web search and metadata engine , 2004, CIKM 2004.

[38]  Eyal Oren,et al.  Sindice.com: Weaving the Open Linked Data , 2007, ISWC/ASWC.

[39]  Luis Gravano,et al.  Efficient IR-Style Keyword Search over Relational Databases , 2003, VLDB.

[40]  Clement T. Yu,et al.  Effective keyword search in relational databases , 2006, SIGMOD Conference.

[41]  Amit P. Sheth,et al.  Semantic Association Identification and Knowledge Discovery for National Security Applications , 2005, J. Database Manag..

[42]  Maria Teresa Pazienza,et al.  Semantic turkey: a browser-integrated environment for knowledge acquisition and management , 2012 .

[43]  Vagelis Hristidis,et al.  DISCOVER: Keyword Search in Relational Databases , 2002, VLDB.