Metabolic Architecture of the Deep Ocean Microbiome

The deep sea, the largest compartment of the ocean, is an essential component of the Earth system, but the functional exploration of its microbial communities lags far behind that of other marine realms. Here we analyze 58 bathypelagic microbial metagenomes from the Atlantic, Indian, and Pacific Oceans in an unprecedented sampling effort from the Malaspina Global Expedition, to resolve the metabolic architecture of the deep ocean microbiome. The Malaspina Deep-Sea Gene Collection, 71% of which consists of novel genes, reveals a strong dichotomy between the functional traits of free-living and particle-attached microorganisms, and shows relatively patchy composition challenging the paradigm of a uniform dark ocean ecosystem. Metagenome Assembled Genomes uncovered 11 potential new phyla, establishing references for deep ocean microbial taxa, and revealed mixotrophy to be a widespread trophic strategy in the deep ocean. These results expand our understanding of the functional diversity, metabolic versatility, and carbon cycling in the largest ecosystem on Earth. One Sentence Summary A whole community genomic survey of the deep microbiome sheds light on the microbial and functional diversity of the dark ocean.

[1]  Connor T. Skennerton,et al.  CheckM: assessing the quality of microbial genomes recovered from isolates, single cells, and metagenomes , 2015, Genome research.

[2]  M. Könneke,et al.  Isolation of an autotrophic ammonia-oxidizing marine archaeon , 2005, Nature.

[3]  Paul D. Cotter,et al.  Nucleic acid-based approaches to investigate microbial-related cheese quality defects , 2012, Front. Microbio..

[4]  Carlos M. Duarte,et al.  Respiration in the open ocean , 2002, Nature.

[5]  G. Fuchs,et al.  Enzymes of a novel autotrophic CO2 fixation pathway in the phototrophic bacterium Chloroflexus aurantiacus, the 3-hydroxypropionate cycle. , 1993, European journal of biochemistry.

[6]  Luis Pedro Coelho,et al.  Structure and function of the global ocean microbiome , 2015, Science.

[7]  Farooq Azam,et al.  Major role of bacteria in biogeochemical fluxes in the ocean's interior , 1988, Nature.

[8]  Janet M. Thornton,et al.  Microeconomic Principles Explain an Optimal Genome Size in Bacteria , 2004, Spanish Bioinformatics Conference.

[9]  C. Duarte,et al.  Seafaring in the 21St Century: The Malaspina 2010 Circumnavigation Expedition , 2015 .

[10]  J. Raven Contributions of anoxygenic and oxygenic phototrophy and chemolithotrophy to carbon and oxygen fluxes in aquatic environments. , 2009 .

[11]  T. Reinthaler,et al.  Contribution of Archaea to Total Prokaryotic Production in the Deep Atlantic Ocean , 2005, Applied and Environmental Microbiology.

[12]  Karthik Anantharaman,et al.  Evidence for hydrogen oxidation and metabolic plasticity in widespread deep-sea sulfur-oxidizing bacteria , 2012, Proceedings of the National Academy of Sciences.

[13]  E. Delong,et al.  Community Genomics Among Stratified Microbial Assemblages in the Ocean's Interior , 2006, Science.

[14]  Tanja Woyke,et al.  Viral dark matter and virus–host interactions resolved from publicly available microbial genomes , 2015, eLife.

[15]  F. Rodríguez-Valera,et al.  The enigmatic SAR202 cluster up close: shedding light on a globally distributed dark ocean lineage involved in sulfur cycling , 2017, The ISME Journal.

[16]  Peter Mullany,et al.  Acquired Antibiotic Resistance Genes: An Overview , 2011, Front. Microbio..

[17]  K. Konstantinidis,et al.  Trends between gene content and genome size in prokaryotic species with larger genomes. , 2004, Proceedings of the National Academy of Sciences of the United States of America.

[18]  M. Taylor,et al.  Visual and lidar observations of noctilucent clouds above Logan, Utah, at 41.7°N , 2002 .

[19]  P. Williams,et al.  Respiration in aquatic ecosystems. , 2005 .

[20]  J. Prosser,et al.  The ribulose-1,5-bisphosphate carboxylase/oxygenase gene cluster of Methylococcus capsulatus (Bath) , 2002, Archives of Microbiology.

[21]  T. Reinthaler,et al.  Microbial control of the dark end of the biological pump. , 2013, Nature geoscience.

[22]  E. Casamayor,et al.  High bicarbonate assimilation in the dark by Arctic bacteria , 2010, The ISME Journal.

[23]  Alison S. Waller,et al.  Role for urea in nitrification by polar marine Archaea , 2012, Proceedings of the National Academy of Sciences.

[24]  C. Duarte,et al.  Sinking particles promote vertical connectivity in the ocean microbiome , 2018, Proceedings of the National Academy of Sciences.

[25]  S. Sievert,et al.  Beyond the Calvin cycle: autotrophic carbon fixation in the ocean. , 2011, Annual review of marine science.

[26]  S. Hallam,et al.  Major role of nitrite-oxidizing bacteria in dark ocean carbon fixation , 2017, Science.

[27]  W. Brazelton,et al.  Metagenomic Evidence for H2 Oxidation and H2 Production by Serpentinite-Hosted Subsurface Microbial Communities , 2012, Front. Microbio..

[28]  J. Venter,et al.  Influence of nutrients and currents on the genomic composition of microbes across an upwelling mosaic , 2012, The ISME Journal.

[29]  David J. Anderson,et al.  Ventromedial hypothalamic neurons control a defensive emotion state , 2015, eLife.

[30]  Jean-Michel Claverie,et al.  Exploring nucleo-cytoplasmic large DNA viruses in Tara Oceans microbial metagenomes , 2013, The ISME Journal.

[31]  E. Delong,et al.  Potential for Chemolithoautotrophy Among Ubiquitous Bacteria Lineages in the Dark Ocean , 2011, Science.

[32]  Andrew E. Allen,et al.  Contrasting genomic properties of free-living and particle-attached microbial assemblages within a coastal ecosystem , 2013, Front. Microbiol..

[33]  Marc Strous,et al.  Archaeal nitrification in the ocean , 2006, Proceedings of the National Academy of Sciences.

[34]  R. Milo,et al.  The biomass distribution on Earth , 2018, Proceedings of the National Academy of Sciences.

[35]  S. Giovannoni,et al.  SAR202 Genomes from the Dark Ocean Predict Pathways for the Oxidation of Recalcitrant Dissolved Organic Matter , 2017, mBio.

[36]  Purificación López-García,et al.  Metagenomics of the Deep Mediterranean, a Warm Bathypelagic Habitat , 2007, PloS one.

[37]  Michael Müller,et al.  Identifying the missing steps of the autotrophic 3-hydroxypropionate CO2 fixation cycle in Chloroflexus aurantiacus , 2009, Proceedings of the National Academy of Sciences.

[38]  F. Rodríguez-Valera,et al.  CO Dehydrogenase Genes Found in Metagenomic Fosmid Clones from the Deep Mediterranean Sea , 2009, Applied and Environmental Microbiology.

[39]  C. Duarte,et al.  Respiration in the mesopelagic and bathypelagic zones of the oceans , 2005 .

[40]  S. Ragsdale Life with Carbon Monoxide , 2004, Critical reviews in biochemistry and molecular biology.

[41]  C. Duarte,et al.  Respiration in the dark ocean , 2003 .

[42]  G. Fischer,et al.  Ballast, sinking velocity, and apparent diffusivity within marine snow and zooplankton fecal pellets: Implications for substrate turnover by attached bacteria , 2008 .

[43]  Francisco M. Cornejo-Castillo,et al.  Particle‐association lifestyle is a phylogenetically conserved trait in bathypelagic prokaryotes , 2015, Molecular ecology.

[44]  P. Bork,et al.  Patterns and ecological drivers of ocean viral communities , 2015, Science.

[45]  E. Delong,et al.  Comparative Metagenomic Analysis of a Microbial Community Residing at a Depth of 4,000 Meters at Station ALOHA in the North Pacific Subtropical Gyre , 2009, Applied and Environmental Microbiology.

[46]  Tom O. Delmont,et al.  Nitrogen-fixing populations of Planctomycetes and Proteobacteria are abundant in surface ocean metagenomes , 2018, Nature Microbiology.

[47]  D. Bianchi,et al.  Global niche of marine anaerobic metabolisms expanded by particle microenvironments , 2018, Nature Geoscience.

[48]  S. Acinas,et al.  Large variability of bathypelagic microbial eukaryotic communities across the world’s oceans , 2015, The ISME Journal.

[49]  Francisco M. Cornejo-Castillo,et al.  Global diversity and biogeography of deep-sea pelagic prokaryotes , 2015, The ISME Journal.

[50]  R. Amann,et al.  Uncultivated microbes in need of their own taxonomy , 2017, The ISME Journal.

[51]  J. Gasol,et al.  Microbial oceanography of the dark ocean's pelagic realm , 2009 .

[52]  M. Doebeli,et al.  Decoupling function and taxonomy in the global ocean microbiome , 2016, Science.

[53]  T. Gaasterland,et al.  Genomic Insights into Mn(II) Oxidation by the Marine Alphaproteobacterium Aurantimonas sp. Strain SI85-9A1 , 2008, Applied and Environmental Microbiology.

[54]  C. Dow,et al.  Purification and initial characterisation of ribulose 1,5-bisphosphate carboxylase from Methylococcus capsulatus (Bath) , 1980 .

[55]  T. Reinthaler,et al.  Major contribution of autotrophy to microbial carbon cycling in the deep North Atlantic’s interior , 2010 .

[56]  Jörg Overmann,et al.  An obligately photosynthetic bacterial anaerobe from a deep-sea hydrothermal vent. , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[57]  A. Halpern,et al.  The Sorcerer II Global Ocean Sampling Expedition: Northwest Atlantic through Eastern Tropical Pacific , 2007, PLoS biology.

[58]  G. King,et al.  Physiological, Ecological, and Phylogenetic Characterization of Stappia, a Marine CO-Oxidizing Bacterial Genus , 2006, Applied and Environmental Microbiology.

[59]  C. Duarte,et al.  Ubiquitous healthy diatoms in the deep sea confirm deep carbon injection by the biological pump , 2015, Nature Communications.

[60]  D. Sorokin Oxidation of Inorganic Sulfur Compounds by Obligately Organotrophic Bacteria , 2003, Microbiology.

[61]  Natalia N. Ivanova,et al.  Minimum information about a single amplified genome (MISAG) and a metagenome-assembled genome (MIMAG) of bacteria and archaea , 2017, Nature Biotechnology.

[62]  Alan D. Chave,et al.  Investigations of ambient light emission at deep‐sea hydrothermal vents , 2002 .

[63]  J. T. Turner Zooplankton fecal pellets, marine snow and sinking phytoplankton blooms , 2002 .

[64]  P. Bork,et al.  A global ocean atlas of eukaryotic genes , 2018, Nature Communications.

[65]  V. Yurkov,et al.  Isolation of Aerobic Anoxygenic Photosynthetic Bacteria from Black Smoker Plume Waters of the Juan de Fuca Ridge in the Pacific Ocean , 1998, Applied and Environmental Microbiology.