Alternating direction implicit-spectral element method (ADI-SEM) for solving multi-dimensional generalized modified anomalous sub-diffusion equation

Abstract The main aim of the current paper is to solve the multi-dimensional generalized modified anomalous sub-diffusion equation by using a new spectral element method. At first, the time variable has been discretized by a finite difference scheme with second-order accuracy. The stability and convergence of the time-discrete scheme have been investigated. We show that the time-discrete scheme is unconditionally stable and the convergence order is O ( τ 2 ) in the temporal direction. Secondly, the Galerkin spectral element method has been combined with alternating direction implicit idea to discrete the space variable. The unconditional stability and convergence of the full-discrete scheme have been proved. By developing the proposed scheme, we need to calculate one-dimensional integrals for two-dimensional problems and two-dimensional integrals for three-dimensional problems. Thus, the used CPU time for the presented numerical procedure is lower than the two- and three-dimensional Galerkin spectral element methods. Also, the proposed method is suitable for computational domains obtained from the tensor product. Finally, two examples are analyzed to check the theoretical results.

[1]  David A. Kopriva,et al.  A Spectral Element Approximation to Price European Options with One Asset and Stochastic Volatility , 2010, J. Sci. Comput..

[2]  Fanhai Zeng,et al.  Spectral approximations to the fractional integral and derivative , 2012 .

[3]  Xianjuan Li,et al.  Finite difference/spectral approximations for the fractional cable equation , 2010, Math. Comput..

[4]  Ali H. Bhrawy,et al.  A method based on the Jacobi tau approximation for solving multi-term time-space fractional partial differential equations , 2015, J. Comput. Phys..

[5]  Mehdi Dehghan,et al.  Solution of two-dimensional modified anomalous fractional sub-diffusion equation via radial basis functions (RBF) meshless method , 2014 .

[6]  Zaid M. Odibat,et al.  Computational algorithms for computing the fractional derivatives of functions , 2009, Math. Comput. Simul..

[7]  Yang Liu,et al.  Second-order approximation scheme combined with H1-Galerkin MFE method for nonlinear time fractional convection-diffusion equation , 2017, Comput. Math. Appl..

[8]  R. Cherry,et al.  Anomalous diffusion of major histocompatibility complex class I molecules on HeLa cells determined by single particle tracking. , 1999, Biophysical journal.

[9]  K. B. Oldham,et al.  The Fractional Calculus: Theory and Applications of Differentiation and Integration to Arbitrary Order , 1974 .

[10]  David A. Kopriva,et al.  A Spectral Element Method to Price European Options. I. Single Asset with and without Jump Diffusion , 2009, J. Sci. Comput..

[11]  W. Webb,et al.  Automated detection and tracking of individual and clustered cell surface low density lipoprotein receptor molecules. , 1994, Biophysical journal.

[12]  Mehdi Dehghan,et al.  Spectral element technique for nonlinear fractional evolution equation, stability and convergence analysis , 2017 .

[13]  Xianjuan Li,et al.  A Space-Time Spectral Method for the Time Fractional Diffusion Equation , 2009, SIAM J. Numer. Anal..

[14]  Francis X. Giraldo,et al.  Strong and Weak Lagrange-Galerkin Spectral Element Methods for the Shallow Water Equations , 2003 .

[15]  Liping Wen,et al.  The implicit midpoint method for the modified anomalous sub-diffusion equation with a nonlinear source term , 2017, J. Comput. Appl. Math..

[16]  M. Khader On the numerical solutions for the fractional diffusion equation , 2011 .

[17]  Fawang Liu,et al.  New Solution and Analytical Techniques of the Implicit Numerical Method for the Anomalous Subdiffusion Equation , 2008, SIAM J. Numer. Anal..

[18]  Fawang Liu,et al.  Finite element approximation for a modified anomalous subdiffusion equation , 2011 .

[19]  W. Webb,et al.  Measurement of molecular diffusion in solution by multiphoton fluorescence photobleaching recovery. , 1999, Biophysical journal.

[20]  W. Webb,et al.  Constrained diffusion or immobile fraction on cell surfaces: a new interpretation. , 1996, Biophysical journal.

[21]  Mehdi Dehghan,et al.  A spectral element method for solving the Pennes bioheat transfer equation by using triangular and quadrilateral elements , 2012 .

[22]  A. Quarteroni,et al.  Numerical Approximation of Partial Differential Equations , 2008 .

[23]  K. Jacobson,et al.  Structural mosaicism on the submicron scale in the plasma membrane. , 1998, Biophysical journal.

[24]  Fawang Liu,et al.  A Novel High Order Space-Time Spectral Method for the Time Fractional Fokker-Planck Equation , 2015, SIAM J. Sci. Comput..

[25]  J. Klafter,et al.  The restaurant at the end of the random walk: recent developments in the description of anomalous transport by fractional dynamics , 2004 .

[26]  T. A. Zang,et al.  Spectral Methods: Fundamentals in Single Domains , 2010 .

[27]  Mehdi Dehghan,et al.  Finite difference procedures for solving a problem arising in modeling and design of certain optoelectronic devices , 2006, Math. Comput. Simul..

[28]  Dumitru Baleanu,et al.  A spectral tau algorithm based on Jacobi operational matrix for numerical solution of time fractional diffusion-wave equations , 2015, J. Comput. Phys..

[29]  Dumitru Baleanu,et al.  A Spectral Legendre–Gauss–Lobatto Collocation Method for a Space-Fractional Advection Diffusion Equations with Variable Coefficients , 2013 .

[30]  Mingrong Cui,et al.  Compact finite difference method for the fractional diffusion equation , 2009, J. Comput. Phys..

[31]  Mehdi Dehghan,et al.  A Legendre spectral element method on a large spatial domain to solve the predator–prey system modeling interacting populations , 2013 .

[32]  Zhi-Zhong Sun,et al.  A high-order difference scheme for the fractional sub-diffusion equation , 2017, Int. J. Comput. Math..

[33]  Changpin Li,et al.  High‐order compact difference schemes for the modified anomalous subdiffusion equation , 2016 .

[34]  Fawang Liu,et al.  Numerical method and analytical technique of the modified anomalous subdiffusion equation with a nonlinear source term , 2009, J. Comput. Appl. Math..

[35]  Fawang Liu,et al.  A Crank-Nicolson ADI Spectral Method for a Two-Dimensional Riesz Space Fractional Nonlinear Reaction-Diffusion Equation , 2014, SIAM J. Numer. Anal..

[36]  Somayeh Mashayekhi,et al.  Numerical solution of distributed order fractional differential equations by hybrid functions , 2016, J. Comput. Phys..

[37]  Ercília Sousa Numerical approximations for fractional diffusion equations via splines , 2011, Comput. Math. Appl..

[38]  Zhibo Wang,et al.  Compact difference schemes for the modified anomalous fractional sub-diffusion equation and the fractional diffusion-wave equation , 2013, J. Comput. Phys..

[39]  Umair Ali,et al.  Modified implicit fractional difference scheme for 2D modified anomalous fractional sub-diffusion equation , 2017 .

[40]  K. Jacobson,et al.  Transient confinement of a glycosylphosphatidylinositol-anchored protein in the plasma membrane. , 1997, Biochemistry.

[41]  Changpin Li,et al.  An alternating direction Galerkin method for a time-fractional partial differential equation with damping in two space dimensions , 2017 .

[42]  M. Dehghan,et al.  Solving nonlinear fractional partial differential equations using the homotopy analysis method , 2010 .

[43]  S. Momani,et al.  Fractional green function for linear time-fractional inhomogeneous partial differential equations in fluid mechanics , 2007 .

[44]  Elyas Shivanian,et al.  Time fractional modified anomalous sub-diffusion equation with a nonlinear source term through locally applied meshless radial point interpolation , 2018, Modern Physics Letters B.

[45]  Tao Wang,et al.  A compact ADI method and its extrapolation for time fractional sub-diffusion equations with nonhomogeneous Neumann boundary conditions , 2018, Comput. Math. Appl..

[46]  George E. Karniadakis,et al.  Discontinuous Spectral Element Methods for Time- and Space-Fractional Advection Equations , 2014, SIAM J. Sci. Comput..

[47]  I. Podlubny Fractional differential equations : an introduction to fractional derivatives, fractional differential equations, to methods of their solution and some of their applications , 1999 .

[48]  Mehdi Dehghan,et al.  The spectral methods for parabolic Volterra integro-differential equations , 2011, J. Comput. Appl. Math..

[49]  Mostafa Abbaszadeh,et al.  Error estimate of second-order finite difference scheme for solving the Riesz space distributed-order diffusion equation , 2019, Appl. Math. Lett..

[50]  Han Zhou,et al.  A class of second order difference approximations for solving space fractional diffusion equations , 2012, Math. Comput..

[51]  Jiye Yang,et al.  Crank-Nicolson ADI Galerkin finite element method for two-dimensional fractional FitzHugh-Nagumo monodomain model , 2015, Appl. Math. Comput..

[52]  W. Wyss The fractional diffusion equation , 1986 .

[53]  Jie Shen,et al.  Efficient Spectral-Galerkin Method I. Direct Solvers of Second- and Fourth-Order Equations Using Legendre Polynomials , 1994, SIAM J. Sci. Comput..

[54]  K. Miller,et al.  An Introduction to the Fractional Calculus and Fractional Differential Equations , 1993 .

[55]  Mostafa Abbaszadeh,et al.  A fourth-order compact solution of the two-dimensional modified anomalous fractional sub-diffusion equation with a nonlinear source term , 2013, Comput. Math. Appl..

[56]  I M Sokolov,et al.  From diffusion to anomalous diffusion: a century after Einstein's Brownian motion. , 2005, Chaos.

[57]  George E. Karniadakis,et al.  Fractional spectral collocation methods for linear and nonlinear variable order FPDEs , 2015, J. Comput. Phys..

[58]  Santos B. Yuste,et al.  An Explicit Finite Difference Method and a New von Neumann-Type Stability Analysis for Fractional Diffusion Equations , 2004, SIAM J. Numer. Anal..

[59]  Zhi‐zhong Sun,et al.  A compact difference scheme for the fractional diffusion-wave equation , 2010 .

[60]  Chuanju Xu,et al.  Finite difference/spectral approximations for the time-fractional diffusion equation , 2007, J. Comput. Phys..

[61]  R. Bagley,et al.  A Theoretical Basis for the Application of Fractional Calculus to Viscoelasticity , 1983 .

[62]  Mehdi Dehghan,et al.  Legendre spectral element method for solving time fractional modified anomalous sub-diffusion equation , 2016 .

[63]  Tao Wang,et al.  A compact LOD method and its extrapolation for two-dimensional modified anomalous fractional sub-diffusion equations , 2016, Comput. Math. Appl..