Discrimination of skin cancer cells using Fourier transform infrared spectroscopy

[1]  Paul Geladi,et al.  Principal Component Analysis , 1987, Comprehensive Chemometrics.

[2]  R. Congalton,et al.  Assessing the Accuracy of Remotely Sensed Data , 2019 .

[3]  M. Kelly,et al.  Object-Based Image Analysis: Evolution, History, State of the Art, and Future Vision , 2018, Remote Sensing Handbook - Three Volume Set.

[4]  Jun Li,et al.  Hyperspectral Image Processing: Methods and Approaches , 2015, Remote Sensing Handbook - Three Volume Set.

[5]  Sunil Narumalani,et al.  Digital Image Processing: A Review of the Fundamental Methods and Techniques , 2015 .

[6]  Gianfelice Cinque,et al.  Single-cell analysis using Fourier transform infrared microspectroscopy , 2017 .

[7]  Valery Naranjo,et al.  Performance of mid infrared spectroscopy in skin cancer cell type identification , 2017, BiOS.

[8]  Valery Naranjo,et al.  Multivariate classification of fourier transform infrared hyperspectral images of skin cancer cells , 2016, 2016 24th European Signal Processing Conference (EUSIPCO).

[9]  H. Byrne,et al.  Spectral pre and post processing for infrared and Raman spectroscopy of biological tissues and cells. , 2016, Chemical Society reviews.

[10]  Valery Naranjo,et al.  Potential of mid IR spectroscopy in the rapid label free identification of skin malignancies , 2016, SPIE BiOS.

[11]  Antonella I. Mazur,et al.  Cancer screening via infrared spectral cytopathology (SCP): results for the upper respiratory and digestive tracts. , 2016, The Analyst.

[12]  Max Diem,et al.  Infrared Microspectroscopy of Cells and Tissue in Medical Diagnostics , 2015 .

[13]  Rekha Gautam,et al.  Review of multidimensional data processing approaches for Raman and infrared spectroscopy , 2015, EPJ Techniques and Instrumentation.

[14]  G. Lloyd,et al.  Infrared micro-spectroscopy for cyto-pathological classification of esophageal cells. , 2015, The Analyst.

[15]  Björn Kemper,et al.  Standardized cell samples for midIR technology development , 2015, Photonics West - Biomedical Optics.

[16]  M. Baker,et al.  Vibrational spectroscopic methods for cytology and cellular research. , 2014, The Analyst.

[17]  Rohit Bhargava,et al.  Using Fourier transform IR spectroscopy to analyze biological materials , 2014, Nature Protocols.

[18]  Age K. Smilde,et al.  Principal Component Analysis , 2003, Encyclopedia of Machine Learning.

[19]  Benjamin Bird,et al.  Spectral cytopathology: new aspects of data collection, manipulation and confounding effects. , 2013, The Analyst.

[20]  N. Clarke,et al.  Exploring the spectroscopic differences of Caki-2 cells progressing through the cell cycle while proliferating in vitro. , 2013, The Analyst.

[21]  K. Bambery,et al.  Synchrotron Fourier transform infrared (FTIR) analysis of single living cells progressing through the cell cycle. , 2013, The Analyst.

[22]  Josep Sulé-Suso,et al.  Morphological analysis of vibrational hyperspectral imaging data. , 2012, The Analyst.

[23]  N. Clarke,et al.  Highlighting a need to distinguish cell cycle signatures from cellular responses to chemotherapeutics in SR-FTIR spectroscopy. , 2012, The Analyst.

[24]  Peter Lasch,et al.  Spectral pre-processing for biomedical vibrational spectroscopy and microspectroscopic imaging , 2012 .

[25]  Benjamin Bird,et al.  Applications of Infrared and Raman Microspectroscopy of Cells and Tissue in Medical Diagnostics: Present Status and Future Promises , 2012 .

[26]  Francis L Martin,et al.  Extracting biological information with computational analysis of Fourier-transform infrared (FTIR) biospectroscopy datasets: current practices to future perspectives. , 2012, The Analyst.

[27]  N. Clarke,et al.  FTIR microscopy of biological cells and tissue: data analysis using resonant Mie scattering (RMieS) EMSC algorithm. , 2012, The Analyst.

[28]  Katia Wehbe,et al.  Electric field standing wave artefacts in FTIR micro-spectroscopy of biological materials. , 2012, The Analyst.

[29]  Xin Yao,et al.  Multiclass Imbalance Problems: Analysis and Potential Solutions. , 2012, IEEE transactions on systems, man, and cybernetics. Part B, Cybernetics : a publication of the IEEE Systems, Man, and Cybernetics Society.

[30]  Benjamin Bird,et al.  Single point vs. mapping approach for spectral cytopathology (SCP) , 2010, Journal of biophotonics.

[31]  Harald Martens,et al.  RMieS‐EMSC correction for infrared spectra of biological cells: Extension using full Mie theory and GPU computing , 2010, Journal of biophotonics.

[32]  M. Diem,et al.  Spectral Cytopathology of Cervical Samples: Detecting Cellular Abnormalities in Cytologically Normal Cells , 2010, Laboratory Investigation.

[33]  Benjamin Bird,et al.  Cytopathology by optical methods: spectral cytopathology of the oral mucosa , 2010, Laboratory Investigation.

[34]  Hugh J. Byrne,et al.  Resonant Mie scattering (RMieS) correction of infrared spectra from highly scattering biological samples. , 2010, The Analyst.

[35]  Richard G. Brereton,et al.  Chemometrics for Pattern Recognition , 2009 .

[36]  Haibo He,et al.  Learning from Imbalanced Data , 2009, IEEE Transactions on Knowledge and Data Engineering.

[37]  Paul Dumas,et al.  Resonant Mie scattering in infrared spectroscopy of biological materials--understanding the 'dispersion artefact'. , 2009, The Analyst.

[38]  Paul Dumas,et al.  Reflection contributions to the dispersion artefact in FTIR spectra of single biological cells. , 2009, The Analyst.

[39]  Peter Filzmoser,et al.  Introduction to Multivariate Statistical Analysis in Chemometrics , 2009 .

[40]  Benjamin Bird,et al.  Cytology by Infrared Micro-Spectroscopy: Automatic Distinction of Cell Types in Urinary Cytology. , 2008, Vibrational Spectroscopy.

[41]  A. Kohler,et al.  Estimating and Correcting Mie Scattering in Synchrotron-Based Microscopic Fourier Transform Infrared Spectra by Extended Multiplicative Signal Correction , 2008, Applied spectroscopy.

[42]  Rafael C. González,et al.  Digital image processing, 3rd Edition , 2008 .

[43]  Ehsan Gazi,et al.  Optical artefacts in transflection mode FTIR microspectroscopic images of single cells on a biological support: the effect of back-scattering into collection optics. , 2007, The Analyst.

[44]  Nasser M. Nasrabadi,et al.  Pattern Recognition and Machine Learning , 2006, Technometrics.

[45]  M. Diem,et al.  Mie-type scattering and non-Beer-Lambert absorption behavior of human cells in infrared microspectroscopy. , 2005, Biophysical journal.

[46]  P. Mather,et al.  Classification Methods for Remotely Sensed Data , 2001 .

[47]  Trevor Hastie,et al.  The Elements of Statistical Learning , 2001 .

[48]  W. McKinney,et al.  IR spectroscopic characteristics of cell cycle and cell death probed by synchrotron radiation based Fourier transform IR spectromicroscopy. , 2000, Biopolymers.

[49]  Pierre Soille,et al.  Morphological Image Analysis , 1999 .

[50]  B. Rigas,et al.  Cytologically normal cells from neoplastic cervical samples display extensive structural abnormalities on IR spectroscopy: implications for tumor biology. , 1998, Proceedings of the National Academy of Sciences of the United States of America.

[51]  W. Fridman,et al.  Highly resolved chemical imaging of living cells by using synchrotron infrared microspectrometry. , 1998, Proceedings of the National Academy of Sciences of the United States of America.

[52]  M. J. Adams,et al.  Chemometrics in Analytical Spectroscopy , 1995 .

[53]  S. Beucher,et al.  Morphological segmentation , 1990, J. Vis. Commun. Image Represent..

[54]  R. Barnes,et al.  Standard Normal Variate Transformation and De-Trending of Near-Infrared Diffuse Reflectance Spectra , 1989 .

[55]  N. Otsu A threshold selection method from gray level histograms , 1979 .

[56]  Keinosuke Fukunaga,et al.  Introduction to Statistical Pattern Recognition , 1972 .

[57]  G. F. Hughes,et al.  On the mean accuracy of statistical pattern recognizers , 1968, IEEE Trans. Inf. Theory.