The use of disharmonic motion curves in problems of the cervical spine

Abstract Cervical spine motion was investigated by three-dimensional electrogoniometry in 257 asymptomatic volunteers and in 32 patients with cervical disc hernia or whiplash syndrome. Maximal ranges of main and coupled motions were considered. Motion curves were analysed qualitatively and using fitting of sixth degree polynomials. Motion ranges obtained were in agreement with previous observations. Significant differences between patients and volunteers concerned several primary and coupled components but not all. Qualitatively, patients displayed less harmonic curves, with irregularities and plateau-like appearances. Root mean square differences between data and fit were significantly modified in patients. Although cervical spine motion ranges may remain within normal limits in patients, motion patterns were altered qualitatively and quantitatively. Motion pattern analysis might prove a useful discrimination parameter in patients in whom anatomical lesions are not clearly identifiable.Résumé Les mouvements cervicaux ont étéétudiés par électrogoniométrie tridimensionnelle chez 257 volontaires asymptomatiques et chez 32 patients (hernie discale ou TAEC). Les amplitudes maximales des mouvements principaux et couplés ont été considérées. Les courbes de mouvement ont été analysées qualitativement et par ajustement polynomial du sixième ordre. Les amplitudes de mouvement étaient en accord avec les observations antérieures. Des différences significatives entre patients et volontaires concernaient plusieurs composantes prin-cipales et couplées, mais pas toutes. Qualitativement, les patients présentaient des courbes moins harmonieuses, avec des irrégularités et des apparences en plateau. Les écarts quadratiques moyens entre les données et l’ajustement étaient significativement modifiés chez les patients. Bien que les amplitudes de mouvement puissent rester dans les limites normales chez les patients, les schémas de mouvement étaient qualitativement et quantitativement altérés. L’analyse des schémas de mouvement pourrait s’avérer être un paramètre de discrimination utile chez les patients chez qui les lésions anatomiques ne sont pas clairement identifiables.

[1]  V. Goel,et al.  A Dynamic Approach to Spinal Instability: Part I: Sensitization of Intersegmental Motion Profiles to Motion Direction and Load Condition by Instability , 1997, Spine.

[2]  H. W. Christensen,et al.  The reliability of measuring active and passive cervical range of motion: an observer-blinded and randomized repeated-measures design. , 1998, Journal of manipulative and physiological therapeutics.

[3]  K. Harms-Ringdahl,et al.  Relationship Between Subjective Neck Disorders and Cervical Spine Mobility and Motion-Related Pain in Male Machine Operators , 1997, Spine.

[4]  M. Mumenthaler,et al.  [Whiplash injuries of the cervical spine. A catamnestic study]. , 1975, Archiv fur orthopadische und Unfall-Chirurgie.

[5]  Sean P. F. Hughes,et al.  Instantaneous Center of Rotation and Instability of the Cervical Spine: A Clinical Study , 1997, Spine.

[6]  V. Goel,et al.  Kinematics of the Cervical Spine Following Discectomy and Stabilization , 1989, Spine.

[7]  M M Panjabi,et al.  Cervical spine motion in the sagittal plane: kinematic and geometric parameters. , 1982, Journal of Biomechanics.

[8]  P. J. Mayer,et al.  Analysis of spine motion variability using a computerized goniometer compared to physical examination. A prospective clinical study. , 1994, Spine.

[9]  T. E. Dreisinger,et al.  Changes in Isometric Strength and Range of Motion of the Isolated Cervical Spine After Eight Weeks of Clinical Rehabilitation , 1992, Spine.

[10]  Three-dimensional head axis of rotation during tracking movements. A tool for assessing neck neuromechanical function. , 1993, Spine.

[11]  T. Lewin,et al.  Work-related persistent neck impairment: a study on former steelworks grinders. , 1994, Ergonomics.

[12]  H J Woltring,et al.  Instantaneous helical axis estimation from 3-D video data in neck kinematics for whiplash diagnostics. , 1994, Journal of biomechanics.

[13]  H. van Mameren,et al.  Cervical Spine Motion in the Sagittal Plane II: Position of Segmental Averaged Instantaneous Centers of Rotation -A Cineradiographic Study , 1992, Spine.

[14]  D. Grob,et al.  Clinical Validation of Functional Flexion/Extension Radiographs of the Cervical Spine , 1993, Spine.

[15]  G. Yamaguchi,et al.  Three-dimensional head kinematics and cervical range of motion in the diagnosis of patients with neck trauma. , 1996, Journal of manipulative and physiological therapeutics.

[16]  Andrew Holmes,et al.  The Range and Nature of Flexion‐Extension Motion in the Cervical Spine , 1994, Spine.

[17]  J Dvorak,et al.  Age and Gender Related Normal Motion of the Cervical Spine , 1992, Spine.

[18]  H. van Mameren,et al.  Cervical spine motion in the sagittal plane (I) range of motion of actually performed movements, an X-ray cinematographic study. , 1990, European journal of morphology.

[19]  Mary Ruhl,et al.  Ability to Reproduce Head Position After Whiplash Injury , 1997, Spine.

[20]  D G Wilder,et al.  The Relationship Between Anthropometric, Postural, Muscular, and Mobility Characteristics of Males Ages 18–55 , 1985, Spine.

[21]  R. Evans Some observations on whiplash injuries. , 1992, Neurologic clinics.

[22]  V Feipel,et al.  Normal global motion of the cervical spine: an electrogoniometric study. , 1999, Clinical biomechanics.

[23]  M. Panjabi,et al.  Posture affects motion coupling patterns of the upper cervical spine , 1993, Journal of orthopaedic research : official publication of the Orthopaedic Research Society.

[24]  M M Panjabi,et al.  The onset and progression of spinal injury: a demonstration of neutral zone sensitivity. , 1992, Journal of biomechanics.

[25]  Nikolai Bogduk,et al.  Abnormal Instantaneous Axes of Rotation in Patients with Neck Pain , 1992, Spine.