Stochastic decompositions in the M/M/1 queue with working vacations

We demonstrate stochastic decomposition structures of the queue length and waiting time in an M/M/1/WV queue, and obtain the distributions of the additional queue length and additional delay. Furthermore, we discuss the relationship between the stochastic decomposition properties of the working vacation queue and those of the standard M/G/1 queue with general vacations.

[1]  C. de Montmollin,et al.  Contribution à l’étude de la tuberculose trachéo·bronchique , 1945 .

[2]  Carl M. Harris,et al.  Fundamentals of queueing theory , 1975 .

[3]  Yutaka Baba,et al.  Analysis of a GI/M/1 queue with multiple working vacations , 2005, Oper. Res. Lett..

[4]  Naishuo Tian,et al.  Vacation Queueing Models: Theory and Applications (International Series in Operations Research & Management Science) , 2006 .

[5]  Hideaki Takagi,et al.  M/G/1 queue with multiple working vacations , 2006, Perform. Evaluation.

[6]  B. T. Doshi,et al.  Queueing systems with vacations — A survey , 1986, Queueing Syst. Theory Appl..

[7]  Naishuo Tian,et al.  Analysis on queueing systems with synchronous vacations of partial servers , 2003, Perform. Evaluation.

[8]  Naishuo Tian,et al.  Vacation Queueing Models Theory and Applications , 2006 .

[9]  J. George Shanthikumar,et al.  On Stochastic Decomposition in M/G/1 Type Queues with Generalized Server Vacations , 1988, Oper. Res..

[10]  Robert B. Cooper,et al.  Stochastic Decompositions in the M/G/1 Queue with Generalized Vacations , 1985, Oper. Res..

[11]  Naishuo Tian,et al.  A two threshold vacation policy in multiserver queueing systems , 2006, Eur. J. Oper. Res..

[12]  Marcel F. Neuts,et al.  Matrix-Geometric Solutions in Stochastic Models , 1981 .

[13]  Carl M. Harris,et al.  Fundamentals of queueing theory (2nd ed.). , 1985 .

[14]  Leslie D. Servi,et al.  M/M/1 queues with working vacations (M/M/1/WV) , 2002, Perform. Evaluation.