Spatiotemporal Fusion in Remote Sensing

[1]  Yi Liu,et al.  Sparse representation based multi-sensor image fusion for multi-focus and multi-modality images: A review , 2018, Inf. Fusion.

[2]  Sebastiano B. Serpico,et al.  A Markov random field approach to spatio-temporal contextual image classification , 2003, IEEE Trans. Geosci. Remote. Sens..

[3]  Rongjun Qin,et al.  A critical analysis of satellite stereo pairs for digital surface model generation and a matching quality prediction model , 2019, ISPRS Journal of Photogrammetry and Remote Sensing.

[4]  Cordelia Schmid,et al.  A Performance Evaluation of Local Descriptors , 2005, IEEE Trans. Pattern Anal. Mach. Intell..

[5]  Christine Pohl,et al.  Multisensor image fusion in remote sensing: concepts, methods and applications , 1998 .

[6]  J. R. Jensen Remote Sensing of the Environment: An Earth Resource Perspective , 2000 .

[7]  Russell G. Congalton,et al.  A review of assessing the accuracy of classifications of remotely sensed data , 1991 .

[8]  Xiaolin Zhu,et al.  An enhanced spatial and temporal adaptive reflectance fusion model for complex heterogeneous regions , 2010 .

[9]  Xianhong Xie,et al.  Land cover classification of finer resolution remote sensing data integrating temporal features from time series coarser resolution data , 2014 .

[10]  Cordelia Schmid,et al.  Beyond Bags of Features: Spatial Pyramid Matching for Recognizing Natural Scene Categories , 2006, 2006 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR'06).

[11]  Joanne C. White,et al.  A new data fusion model for high spatial- and temporal-resolution mapping of forest disturbance based on Landsat and MODIS , 2009 .

[12]  M. S. Moran,et al.  Evaluation of simplified procedures for retrieval of land surface reflectance factors from satellite sensor output , 1992 .

[13]  Enric Meinhardt,et al.  Automatic 3D Reconstruction from Multi-date Satellite Images , 2017, 2017 IEEE Conference on Computer Vision and Pattern Recognition Workshops (CVPRW).

[14]  Zhenfeng Shao,et al.  Remote Sensing Image Fusion With Deep Convolutional Neural Network , 2018, IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing.

[15]  Bo Huang,et al.  Spatiotemporal Reflectance Fusion via Sparse Representation , 2012, IEEE Transactions on Geoscience and Remote Sensing.

[16]  Jean Ponce,et al.  Learning mid-level features for recognition , 2010, 2010 IEEE Computer Society Conference on Computer Vision and Pattern Recognition.

[17]  Jon Atli Benediktsson,et al.  Advances in Spectral-Spatial Classification of Hyperspectral Images , 2013, Proceedings of the IEEE.

[18]  Jean-Yves Tourneret,et al.  Hyperspectral and Multispectral Image Fusion Based on a Sparse Representation , 2014, IEEE Transactions on Geoscience and Remote Sensing.

[19]  Bill Triggs,et al.  Histograms of oriented gradients for human detection , 2005, 2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR'05).

[20]  Xiao Xiang Zhu,et al.  Deep Learning in Remote Sensing: A Comprehensive Review and List of Resources , 2017, IEEE Geoscience and Remote Sensing Magazine.

[21]  Isabelle Bloch,et al.  Image Fusion , 1997 .

[22]  Rongjun Qin,et al.  A novel spectrum enhancement technique for multi-temporal, multi-spectral data using spatial-temporal filtering , 2018, ISPRS Journal of Photogrammetry and Remote Sensing.

[23]  Parisa Shokouhi,et al.  Decision-Level Fusion of Spatially Scattered Multi-Modal Data for Nondestructive Inspection of Surface Defects , 2016, Sensors.

[24]  Jinying Zhong,et al.  Remote Sensing Image Fusion with Convolutional Neural Network , 2016 .

[25]  Johannes R. Sveinsson,et al.  Multispectral and Hyperspectral Image Fusion Using a 3-D-Convolutional Neural Network , 2017, IEEE Geoscience and Remote Sensing Letters.

[26]  Liangpei Zhang,et al.  An Error-Bound-Regularized Sparse Coding for Spatiotemporal Reflectance Fusion , 2015, IEEE Transactions on Geoscience and Remote Sensing.

[27]  Roberto Manduchi,et al.  Bilateral filtering for gray and color images , 1998, Sixth International Conference on Computer Vision (IEEE Cat. No.98CH36271).

[28]  Bo Huang,et al.  Generating High Spatiotemporal Resolution Land Surface Temperature for Urban Heat Island Monitoring , 2013, IEEE Geoscience and Remote Sensing Letters.

[29]  Georg Kuschk,et al.  LARGE SCALE URBAN RECONSTRUCTION FROM REMOTE SENSING IMAGERY , 2013 .

[30]  F. Javier García-Haro,et al.  A comparison of STARFM and an unmixing-based algorithm for Landsat and MODIS data fusion , 2015 .

[31]  A. Ardeshir Goshtasby,et al.  2-D and 3-D Image Registration: for Medical, Remote Sensing, and Industrial Applications , 2005 .

[32]  Long Wang,et al.  Multimodality image fusion by using both phase and magnitude information , 2013, Pattern Recognit. Lett..

[33]  Eric P. Crist,et al.  A Physically-Based Transformation of Thematic Mapper Data---The TM Tasseled Cap , 1984, IEEE Transactions on Geoscience and Remote Sensing.

[34]  Hong Liang,et al.  Evaluating the effectiveness of fusing remote sensing images with significantly different spatial resolutions for thematic map production , 2019 .

[35]  Joanne C. White,et al.  Optical remotely sensed time series data for land cover classification: A review , 2016 .

[36]  Geoffrey H. Ball,et al.  ISODATA, A NOVEL METHOD OF DATA ANALYSIS AND PATTERN CLASSIFICATION , 1965 .

[37]  Marc'Aurelio Ranzato,et al.  Sparse Feature Learning for Deep Belief Networks , 2007, NIPS.

[38]  Peijun Du,et al.  Information fusion techniques for change detection from multi-temporal remote sensing images , 2013, Inf. Fusion.

[39]  E. Mikhail,et al.  Introduction to modern photogrammetry , 2001 .

[40]  Shutao Li,et al.  Remote Sensing Image Fusion via Sparse Representations Over Learned Dictionaries , 2013, IEEE Transactions on Geoscience and Remote Sensing.

[41]  Alexei A. Efros,et al.  Context Encoders: Feature Learning by Inpainting , 2016, 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

[42]  Lianru Gao,et al.  An Improved Spatial and Temporal Reflectance Unmixing Model to Synthesize Time Series of Landsat-Like Images , 2018, Remote. Sens..

[43]  Shutao Li,et al.  Multispectral and hyperspectral image fusion with spatial-spectral sparse representation , 2019, Inf. Fusion.

[44]  Stéphane Mallat,et al.  A Theory for Multiresolution Signal Decomposition: The Wavelet Representation , 1989, IEEE Trans. Pattern Anal. Mach. Intell..

[45]  Davide Cozzolino,et al.  Pansharpening by Convolutional Neural Networks , 2016, Remote. Sens..

[46]  Bin Chen,et al.  Comparison of Spatiotemporal Fusion Models: A Review , 2015, Remote. Sens..

[47]  Jamie Sherrah,et al.  Semantic Labeling of Aerial and Satellite Imagery , 2016, IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing.

[48]  Yunlong Yu,et al.  Dense Connectivity Based Two-Stream Deep Feature Fusion Framework for Aerial Scene Classification , 2018, Remote. Sens..

[49]  Alexandre Boulch,et al.  Benchmarking classification of earth-observation data: From learning explicit features to convolutional networks , 2015, 2015 IEEE International Geoscience and Remote Sensing Symposium (IGARSS).

[50]  Michael K. Ng,et al.  Super-Resolution Reconstruction Algorithm To MODIS Remote Sensing Images , 2009, Comput. J..

[51]  Peng Wang,et al.  An Adaptive Multi-Sensor Data Fusion Method Based on Deep Convolutional Neural Networks for Fault Diagnosis of Planetary Gearbox , 2017, Sensors.

[52]  Xavier Otazu,et al.  Multiresolution-based image fusion with additive wavelet decomposition , 1999, IEEE Trans. Geosci. Remote. Sens..

[53]  Yanchen Bo,et al.  Spatiotemporal fusion of multiple‐satellite aerosol optical depth (AOD) products using Bayesian maximum entropy method , 2016 .

[54]  Arun Ross,et al.  Fusion, Feature-Level , 2009, Encyclopedia of Biometrics.

[55]  Bin Chen,et al.  A hierarchical spatiotemporal adaptive fusion model using one image pair , 2017, Int. J. Digit. Earth.

[56]  E. Vermote,et al.  Absolute calibration of AVHRR visible and near-infrared channels using ocean and cloud views , 1995 .

[57]  Manfred Ehlers,et al.  Multi-sensor image fusion for pansharpening in remote sensing , 2010 .

[58]  Jan Verbesselt,et al.  Feature Level Fusion of Multi-Temporal ALOS PALSAR and Landsat Data for Mapping and Monitoring of Tropical Deforestation and Forest Degradation , 2013, IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing.

[59]  Bertrand Le Saux,et al.  Semantic Segmentation of Earth Observation Data Using Multimodal and Multi-scale Deep Networks , 2016, ACCV.

[60]  Giles M. Foody,et al.  A relative evaluation of multiclass image classification by support vector machines , 2004, IEEE Transactions on Geoscience and Remote Sensing.

[61]  Lisa M. Brown,et al.  A survey of image registration techniques , 1992, CSUR.

[62]  Bo Huang,et al.  Spatiotemporal Satellite Image Fusion Through One-Pair Image Learning , 2013, IEEE Transactions on Geoscience and Remote Sensing.

[63]  Feng Gao,et al.  A Hybrid Color Mapping Approach to Fusing MODIS and Landsat Images for Forward Prediction , 2018, Remote. Sens..

[64]  Kalyan Veeramachaneni,et al.  Fusion, Decision-Level , 2015, Encyclopedia of Biometrics.

[65]  Yi Shen,et al.  Region level based multi-focus image fusion using quaternion wavelet and normalized cut , 2014, Signal Process..

[66]  . M.Sasikala,et al.  A Comparative Analysis of Feature Based Image Fusion Methods , 2007 .

[67]  Christopher D. Elvidge,et al.  Relative radiometric normalization of Landsat Multispectral Scanner data using an automatic scattergram-controlled regression , 1998 .

[68]  Shawn D. Newsam,et al.  Bag-of-visual-words and spatial extensions for land-use classification , 2010, GIS '10.

[69]  Rongjun Qin,et al.  ENHANCEMENT OF DEPTH MAP BY FUSION USING ADAPTIVE AND SEMANTIC-GUIDED SPATIOTEMPORAL FILTERING , 2020 .

[70]  Qingshan Liu,et al.  Spatiotemporal Satellite Image Fusion Using Deep Convolutional Neural Networks , 2018, IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing.

[71]  Nicolas Courty,et al.  Multiclass feature learning for hyperspectral image classification: sparse and hierarchical solutions , 2015, ArXiv.

[72]  Pramod K. Varshney,et al.  Super-resolution land cover mapping using a Markov random field based approach , 2005 .

[73]  Yuzhong Shen,et al.  Assessment of Spatiotemporal Fusion Algorithms for Planet and Worldview Images , 2018, Sensors.

[74]  Stuart C. Sides,et al.  Comparison of Three Different Methods to Merge Multiresolution and Multispectral Data: LANDSAT TM and SPOT Panchromatic: ABSTRACT , 1990 .

[75]  Anil K. Jain,et al.  Encyclopedia of Biometrics , 2015, Springer US.

[76]  Kim-Kwang Raymond Choo,et al.  Spectral–spatial multi-feature-based deep learning for hyperspectral remote sensing image classification , 2016, Soft Computing.

[77]  Jiaojiao Tian,et al.  Spatiotemporal inferences for use in building detection using series of very-high-resolution space-borne stereo images , 2016 .

[78]  Mao Li,et al.  3D Iterative Spatiotemporal Filtering for Classification of Multitemporal Satellite Data Sets , 2021, ArXiv.

[79]  Kyung-Ok Kim,et al.  Epipolar Geometry of Line Cameras Moving with Constant Velocity and Attitude , 2005 .

[80]  M. S. Moran,et al.  Reflectance- and radiance-based methods for the in-flight absolute calibration of multispectral sensors , 1987 .

[81]  Anthony G. Vorster,et al.  A survival guide to Landsat preprocessing. , 2017, Ecology.

[82]  Christopher D. Elvidge,et al.  Comparison of relative radiometric normalization techniques , 1996 .

[83]  David G. Lowe,et al.  Distinctive Image Features from Scale-Invariant Keypoints , 2004, International Journal of Computer Vision.

[84]  Jia Liu,et al.  Change detection based on deep feature representation and mapping transformation for multi-spatial-resolution remote sensing images , 2016 .

[85]  N. Cressie,et al.  Spatial Statistical Data Fusion for Remote Sensing Applications , 2012 .

[86]  Jean-Yves Tourneret,et al.  Bayesian fusion of hyperspectral and multispectral images , 2014, 2014 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP).

[87]  S. Sides,et al.  Comparison of three different methods to merge multiresolution and multispectral data: Landsat TM and SPOT panchromatic , 1991 .

[88]  José A. Sobrino,et al.  Radiometric correction effects in Landsat multi‐date/multi‐sensor change detection studies , 2006 .

[89]  Guillermo Sapiro,et al.  Image inpainting , 2000, SIGGRAPH.

[90]  Christopher G. Harris,et al.  A Combined Corner and Edge Detector , 1988, Alvey Vision Conference.

[91]  Mathew R. Schwaller,et al.  On the blending of the Landsat and MODIS surface reflectance: predicting daily Landsat surface reflectance , 2006, IEEE Transactions on Geoscience and Remote Sensing.

[92]  Rongjun Qin,et al.  A Hierarchical Building Detection Method for Very High Resolution Remotely Sensed Images Combined with DSM Using Graph Cut Optimization , 2014 .

[93]  Rasmus Fensholt,et al.  An ESTARFM Fusion Framework for the Generation of Large-Scale Time Series in Cloud-Prone and Heterogeneous Landscapes , 2016, Remote. Sens..

[94]  Zhengdong Zhang,et al.  Comparison of artificial neural network and support vector machine methods for urban land use/cover classifications from remote sensing images A Case Study of Guangzhou, South China , 2010, 2010 International Conference on Computer Application and System Modeling (ICCASM 2010).

[95]  Russell C. Hardie,et al.  Application of the stochastic mixing model to hyperspectral resolution enhancement , 2004, IEEE Transactions on Geoscience and Remote Sensing.

[96]  Maoguo Gong,et al.  Superpixel-Based Difference Representation Learning for Change Detection in Multispectral Remote Sensing Images , 2017, IEEE Transactions on Geoscience and Remote Sensing.

[97]  Jon Atli Benediktsson,et al.  Spectral–Spatial Hyperspectral Image Classification With Edge-Preserving Filtering , 2014, IEEE Transactions on Geoscience and Remote Sensing.