Continuous Geodesic Convolutions for Learning on 3D Shapes

The majority of descriptor-based methods for geometric processing of non-rigid shape rely on hand-crafted descriptors. Recently, learning-based techniques have been shown effective, achieving state-of-the-art results in a variety of tasks. Yet, even though these methods can in principle work directly on raw data, most methods still rely on hand-crafted descriptors at the input layer. In this work, we wish to challenge this practice and use a neural network to learn descriptors directly from the raw mesh. To this end, we introduce two modules into our neural architecture. The first is a local reference frame (LRF) used to explicitly make the features invariant to rigid transformations. The second is continuous convolution kernels that provide robustness to sampling. We show the efficacy of our proposed network in learning on raw meshes using two cornerstone tasks: shape matching, and human body parts segmentation. Our results show superior results over baseline methods that use hand-crafted descriptors.

[1]  Andreas Wieser,et al.  The Perfect Match: 3D Point Cloud Matching With Smoothed Densities , 2018, 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR).

[2]  Leonidas J. Guibas,et al.  TextureNet: Consistent Local Parametrizations for Learning From High-Resolution Signals on Meshes , 2018, 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR).

[3]  Marcel Campen,et al.  A Simple Approach to Intrinsic Correspondence Learning on Unstructured 3D Meshes , 2018, ECCV Workshops.

[4]  Wojciech Matusik,et al.  Articulated mesh animation from multi-view silhouettes , 2008, ACM Trans. Graph..

[5]  Nassir Navab,et al.  Repeatable Local Coordinate Frames for 3D Human Motion Tracking: From Rigid to Non-rigid , 2015, 2015 International Conference on 3D Vision.

[6]  Daniel Cremers,et al.  The wave kernel signature: A quantum mechanical approach to shape analysis , 2011, 2011 IEEE International Conference on Computer Vision Workshops (ICCV Workshops).

[7]  Slobodan Ilic,et al.  3D Local Features for Direct Pairwise Registration , 2019, 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR).

[8]  Mohammed Bennamoun,et al.  On the Repeatability and Quality of Keypoints for Local Feature-based 3D Object Retrieval from Cluttered Scenes , 2009, International Journal of Computer Vision.

[9]  Leonidas J. Guibas,et al.  KPConv: Flexible and Deformable Convolution for Point Clouds , 2019, 2019 IEEE/CVF International Conference on Computer Vision (ICCV).

[10]  Luc Van Gool,et al.  Dynamic Filter Networks , 2016, NIPS.

[11]  DigneJulie,et al.  Self-similarity for accurate compression of point sampled surfaces , 2014 .

[12]  Jimmy Ba,et al.  Adam: A Method for Stochastic Optimization , 2014, ICLR.

[13]  Slobodan Ilic,et al.  PPFNet: Global Context Aware Local Features for Robust 3D Point Matching , 2018, 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition.

[14]  Jonathan Masci,et al.  Geometric Deep Learning on Graphs and Manifolds Using Mixture Model CNNs , 2016, 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

[15]  Marc Alexa,et al.  ABC: A Big CAD Model Dataset for Geometric Deep Learning , 2018, 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR).

[16]  Raif M. Rustamov,et al.  Laplace-Beltrami eigenfunctions for deformation invariant shape representation , 2007 .

[17]  Michael J. Black,et al.  FAUST: Dataset and Evaluation for 3D Mesh Registration , 2014, 2014 IEEE Conference on Computer Vision and Pattern Recognition.

[18]  Alexander M. Bronstein,et al.  Deep Functional Maps: Structured Prediction for Dense Shape Correspondence , 2017, 2017 IEEE International Conference on Computer Vision (ICCV).

[19]  Marco Attene,et al.  A lightweight approach to repairing digitized polygon meshes , 2010, The Visual Computer.

[20]  Daniel Cremers,et al.  Anisotropic Diffusion Descriptors , 2016, Comput. Graph. Forum.

[21]  Ersin Yumer,et al.  Convolutional neural networks on surfaces via seamless toric covers , 2017, ACM Trans. Graph..

[22]  Raquel Urtasun,et al.  Deep Parametric Continuous Convolutional Neural Networks , 2018, 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition.

[23]  A. Bronstein,et al.  Learning Spectral Descriptors for Deformable Shape Correspondence , 2014, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[24]  Dragomir Anguelov,et al.  SCAPE: shape completion and animation of people , 2005, ACM Trans. Graph..

[25]  Emanuele Menegatti,et al.  Quaternion Equivariant Capsule Networks for 3D Point Clouds , 2019, ECCV.

[26]  Slobodan Ilic,et al.  PPF-FoldNet: Unsupervised Learning of Rotation Invariant 3D Local Descriptors , 2018, ECCV.

[27]  Andrew E. Johnson,et al.  Using Spin Images for Efficient Object Recognition in Cluttered 3D Scenes , 1999, IEEE Trans. Pattern Anal. Mach. Intell..

[28]  Yaron Lipman,et al.  Point convolutional neural networks by extension operators , 2018, ACM Trans. Graph..

[29]  Federico Tombari,et al.  GFrames: Gradient-Based Local Reference Frame for 3D Shape Matching , 2019, 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR).

[30]  Edmond Boyer,et al.  FeaStNet: Feature-Steered Graph Convolutions for 3D Shape Analysis , 2017, 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition.

[31]  Leonidas J. Guibas,et al.  PointNet: Deep Learning on Point Sets for 3D Classification and Segmentation , 2016, 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

[32]  Nico Blodow,et al.  Fast Point Feature Histograms (FPFH) for 3D registration , 2009, 2009 IEEE International Conference on Robotics and Automation.

[33]  Geoffrey E. Hinton,et al.  Rectified Linear Units Improve Restricted Boltzmann Machines , 2010, ICML.

[34]  Joan Bruna,et al.  Deep Convolutional Networks on Graph-Structured Data , 2015, ArXiv.

[35]  Lee Hwee Kuan,et al.  ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE , VOL . ? ? , NO . ? ? , ? ? ? 201 ? 1 eXclusive Component Analysis : Theory and Applications , 2014 .

[36]  Baoquan Chen,et al.  PointCNN: Convolution On $\mathcal{X}$-Transformed Points , 2018 .

[37]  Vladimir G. Kim,et al.  Blended intrinsic maps , 2011, ACM Trans. Graph..

[38]  Jian Sun,et al.  Deep Residual Learning for Image Recognition , 2015, 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

[39]  Stefanos Zafeiriou,et al.  SpiralNet++: A Fast and Highly Efficient Mesh Convolution Operator , 2019, 2019 IEEE/CVF International Conference on Computer Vision Workshop (ICCVW).

[40]  Vladlen Koltun,et al.  Fully Convolutional Geometric Features , 2019, 2019 IEEE/CVF International Conference on Computer Vision (ICCV).

[41]  Leonidas J. Guibas,et al.  PointNet++: Deep Hierarchical Feature Learning on Point Sets in a Metric Space , 2017, NIPS.

[42]  Yi Li,et al.  Deformable Convolutional Networks , 2017, 2017 IEEE International Conference on Computer Vision (ICCV).

[43]  Xavier Bresson,et al.  Convolutional Neural Networks on Graphs with Fast Localized Spectral Filtering , 2016, NIPS.

[44]  Nico Blodow,et al.  Persistent Point Feature Histograms for 3D Point Clouds , 2008 .

[45]  Leonidas J. Guibas,et al.  A concise and provably informative multi-scale signature based on heat diffusion , 2009 .

[46]  Federico Tombari,et al.  Unique Signatures of Histograms for Local Surface Description , 2010, ECCV.

[47]  Pierre Vandergheynst,et al.  Geometric Deep Learning: Going beyond Euclidean data , 2016, IEEE Signal Process. Mag..

[48]  Jonathan Masci,et al.  Learning shape correspondence with anisotropic convolutional neural networks , 2016, NIPS.

[49]  Daniela Giorgi,et al.  SHape REtrieval Contest 2007: Watertight Models Track , 2007 .

[50]  Sébastien Valette,et al.  Self‐similarity for accurate compression of point sampled surfaces , 2014, Comput. Graph. Forum.

[51]  Alexander M. Bronstein,et al.  Self-supervised Learning of Dense Shape Correspondence , 2018, ArXiv.

[52]  Daniel Cremers,et al.  Dense Non-rigid Shape Correspondence Using Random Forests , 2014, 2014 IEEE Conference on Computer Vision and Pattern Recognition.

[53]  Sergey Ioffe,et al.  Batch Normalization: Accelerating Deep Network Training by Reducing Internal Covariate Shift , 2015, ICML.

[54]  Keenan Crane,et al.  Geodesics in heat: A new approach to computing distance based on heat flow , 2012, TOGS.

[55]  Elmar Eisemann,et al.  CNNs on surfaces using rotation-equivariant features , 2020, ACM Trans. Graph..

[56]  Joan Bruna,et al.  Spectral Networks and Locally Connected Networks on Graphs , 2013, ICLR.

[57]  Iasonas Kokkinos,et al.  Scale-invariant heat kernel signatures for non-rigid shape recognition , 2010, 2010 IEEE Computer Society Conference on Computer Vision and Pattern Recognition.

[58]  Vladlen Koltun,et al.  Learning Compact Geometric Features , 2017, 2017 IEEE International Conference on Computer Vision (ICCV).

[59]  Neil A. Dodgson,et al.  Fast Marching farthest point sampling , 2003, Eurographics.

[60]  Leonidas J. Guibas,et al.  Shape google: Geometric words and expressions for invariant shape retrieval , 2011, TOGS.

[61]  Alexander M. Bronstein,et al.  Cloud Dictionary: Sparse Coding and Modeling for Point Clouds , 2016, ArXiv.

[62]  Matthias Nießner,et al.  3DMatch: Learning Local Geometric Descriptors from RGB-D Reconstructions , 2016, 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

[63]  Maks Ovsjanikov,et al.  Multi-directional geodesic neural networks via equivariant convolution , 2018, ACM Trans. Graph..

[64]  Aaron Hertzmann,et al.  Learning 3D mesh segmentation and labeling , 2010, ACM Trans. Graph..

[65]  Luigi di Stefano,et al.  On the repeatability of the local reference frame for partial shape matching , 2011, 2011 International Conference on Computer Vision.

[66]  Federico Tombari,et al.  Unique shape context for 3d data description , 2010, 3DOR '10.

[67]  Yulan Guo,et al.  RoPS: A local feature descriptor for 3D rigid objects based on rotational projection statistics , 2013, 2013 1st International Conference on Communications, Signal Processing, and their Applications (ICCSPA).

[68]  Pierre Vandergheynst,et al.  Geodesic Convolutional Neural Networks on Riemannian Manifolds , 2015, 2015 IEEE International Conference on Computer Vision Workshop (ICCVW).